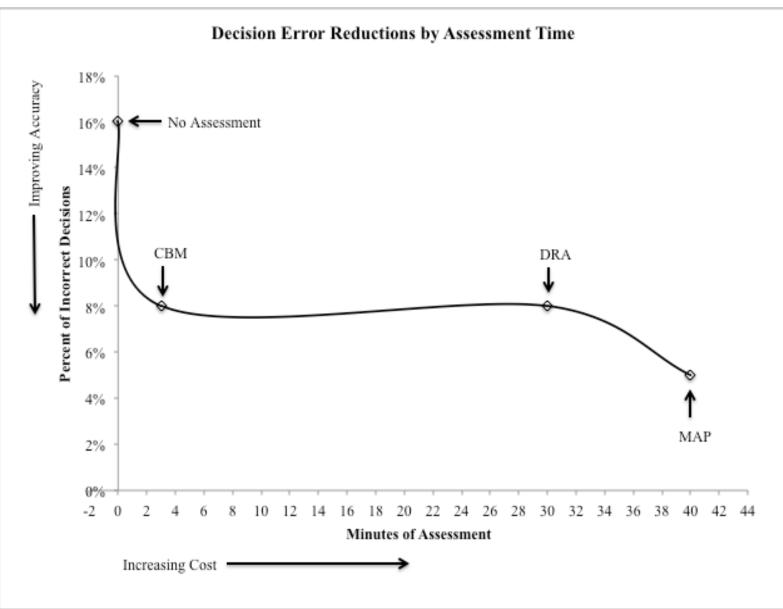

# The Next Frontier: MTSS for Math

Amanda VanDerHeyden <u>www.springmath.com</u> @amandavande1 @springmathk8 <u>amandavande@gmail.com</u>



## Step 2: Effective Screening


### Concurrent Correlated Measures Do Not Increase Accuracy of Risk Decision



Year-End State Test Score in Reading

Avoid Over-Assessment

## All Assessments Come at a Cost



Avoid Over-Assessment

## In Math Screening Specifically



The preceding yearend test score is not bad to determine fall risk status



Single-skill computation measures work very well



Single-skill computation probes tend to be more sensitive than other measures.



But teachers tend to like measures that look like their instruction (reflect the full breadth of their instructional objectives)

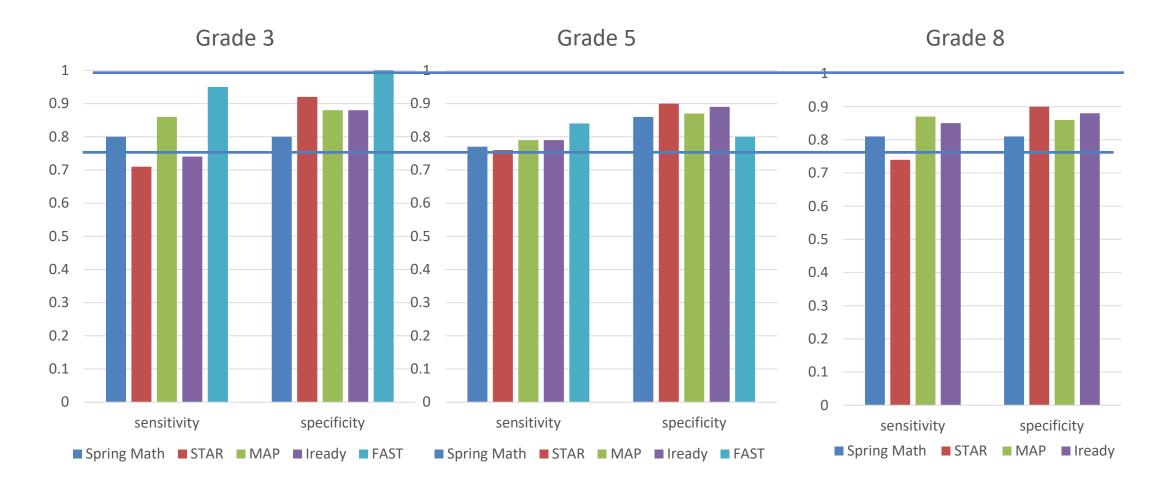


Intervention trials make screening more accurate (because changes the base rate or prevalence of failure).

## Big Ideas in Math Assessment

ш÷.

|                                           | Grade | s |   |   |   |   |   |   |   |
|-------------------------------------------|-------|---|---|---|---|---|---|---|---|
|                                           | к     | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| g Rational Numbers and Variables          |       |   |   |   |   |   |   |   |   |
| tional Numbers and Variables              |       |   |   |   |   |   |   |   |   |
| Comparison, Ordinal Position, Place Value |       |   |   |   |   |   |   |   |   |
| ative Reasoning                           |       |   |   |   |   |   |   |   |   |
| nal Reasoning                             |       |   |   |   |   |   |   |   |   |
| r Unknowns                                |       |   |   |   |   |   |   |   |   |
| Equivalent Quantities                     |       |   |   |   |   |   |   |   |   |
| iquivalent Quantities                     |       |   |   |   |   |   |   |   |   |


|                       | Screening Fall                                                                                                                                                                               | Screening Winter                                                                                                                                                               | Screening Spring                                                                                                                                                                                                                                                                                                                                 |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kindergarten          | <ul> <li>Counting Objects to 10,<br/>Circle Answer</li> <li>Identify Number, Draw<br/>Circles to 10</li> <li>Quantity Comparison with<br/>Dots to 10</li> <li>Missing Number 0-10</li> </ul> | <ul> <li>Count Objects, Write Number<br/>to 20</li> <li>Identify Number, Draw Circles</li> <li>Quantity Comparison with<br/>Dots to 20</li> <li>Missing Number 0-20</li> </ul> | <ul> <li>Change Quantity with Dots to<br/>10</li> <li>Missing Number 0-20</li> <li>Sums to 5 Kinder</li> <li>Subtraction 0-5 Kinder</li> </ul>                                                                                                                                                                                                   |
| 1 <sup>st</sup> Grade | <ul><li>Sums to 6</li><li>Subtraction 0-5</li><li>Quantity Comparison 20-99</li></ul>                                                                                                        | <ul> <li>Sums to 12</li> <li>Subtraction 0-5</li> <li>Fact Families Addition &amp;<br/>Subtraction 0-5</li> <li>Quantity Comparison 101-999</li> </ul>                         | <ul> <li>Sums to 20</li> <li>Subtraction 0-20</li> <li>Fact Families Addition &amp;<br/>Subtraction 0-9</li> </ul>                                                                                                                                                                                                                               |
| 2 <sup>nd</sup> Grade | <ul> <li>Sums to 20</li> <li>Subtraction 0-20</li> <li>Fact Families Addition &amp;<br/>Subtraction 0-20</li> <li>Quantity Comparison 1001-<br/>9999</li> </ul>                              | <ul> <li>2-dig add without regrouping</li> <li>2-dig sub without regrouping</li> <li>Quantity Comparison<br/>Sums/Differences to 20</li> </ul>                                 | <ul> <li>2-digit Addition with<br/>regrouping</li> <li>2-digit Subtraction with<br/>regrouping</li> <li>Create equivalent Addition &amp;<br/>Subtraction Problems (using<br/>place value &amp; decomposition)</li> <li>Create equivalent Addition &amp;<br/>Subtraction problems (Using<br/>Associative Property &amp; Near<br/>Easy)</li> </ul> |
| 3 <sup>rd</sup> Grade | <ul> <li>Fact Families +/- 0-20</li> <li>3-dig add with &amp; without regrouping</li> <li>3-dig sub with &amp; without regrouping</li> </ul>                                                 | <ul> <li>Multiplication 0-9</li> <li>Division 0-9</li> <li>Fact Families Multiplication &amp;<br/>Division 0-9</li> </ul>                                                      | <ul> <li>Multiply 1 by 2-3 digit without<br/>Regrouping</li> <li>Divide 1-digit into 2-3 digit<br/>without remainders</li> <li>Quantity Comparison fractions<br/>with Like Denominators</li> <li>Place Fractions on Number<br/>Line (2, 4, 8)</li> </ul>                                                                                         |

Screening Measures Used in Spring Math

| 4 <sup>th</sup> Grade | <ul> <li>Fact Families Multiply/Divide<br/>0-12</li> <li>Multiply 1 by 2-3 with &amp;<br/>without regrouping</li> <li>Place Fractions on Number<br/>Line (2, 3, 4, 5, 6, 8, 10)</li> <li>Quantity Comparison<br/>Decimals to Hundredths</li> </ul> | <ul> <li>Multiply 2 x 2 with &amp; without regrouping</li> <li>Add &amp; Subtract Mixed Numbers with Like Denominators &amp; Regrouping</li> <li>Quantity Comparison for Fractions with Unlike Denominators</li> </ul> | <ul> <li>Add &amp; Subtract with Decimals<br/>to Hundredths</li> <li>Convert Decimals to Fractions<br/>&amp; Fractions to Decimals</li> <li>Quantity Comparison<br/>fractions, decimals, whole<br/>numbers</li> <li>Create Equivalent<br/>Multiplication Problems by<br/>Factoring</li> </ul> |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 <sup>th</sup> Grade | <ul> <li>Fact Families Mult/Div 0-12</li> <li>Add &amp; Sub Decimals to<br/>100ths</li> <li>Multiply 2 x 2 with and<br/>without Regrouping</li> <li>Find Least Common<br/>Denominator</li> </ul>                                                   | <ul> <li>Convert Improper Fractions to<br/>Mixed Numbers</li> <li>Add &amp; Subtract Fractions with<br/>Unlike Denominators</li> <li>Quantity Comparison<br/>fractions, decimals, whole<br/>numbers</li> </ul>         | <ul> <li>Simplify Fractions</li> <li>Multiply &amp; Divide Decimals</li> <li>Multiply &amp; Divide Proper &amp;<br/>Improper Fractions</li> <li>Quantity Comparison with<br/>whole numbers, fractions,<br/>decimals, percents</li> </ul>                                                      |
| 6 <sup>th</sup> Grade | <ul> <li>Add &amp; Subtract Fractions<br/>with Unlike Denominators</li> <li>Convert Improper Fractions<br/>to Mixed Numbers</li> <li>Order of Operations</li> </ul>                                                                                | <ul> <li>Multiply &amp; Divide Mixed<br/>Numbers</li> <li>Multiply 2 x 2 with decimals</li> <li>Distributive Property of<br/>Expression</li> </ul>                                                                     | <ul> <li>Mixed Fraction Operations</li> <li>Substitute Whole Number to<br/>Solve Equations</li> <li>Mixed Decimal Operations</li> <li>Collect Like Terms</li> </ul>                                                                                                                           |
| 7 <sup>th</sup> Grade | <ul> <li>Solve Algebraic Proportions</li> <li>Solve Missing Value in a<br/>Percentage Problem</li> <li>Mixed Operations Integers</li> </ul>                                                                                                        | <ul> <li>Order of Operations</li> <li>Inverse Operations with<br/>Addition &amp; Subtraction</li> <li>Inverse Operations with<br/>Multiplication &amp; Division</li> </ul>                                             | <ul> <li>Solve 2-step Equations</li> <li>Translate Verbal Expressions into Math Equations</li> <li>Solve 2-step Equations with Fractions</li> </ul>                                                                                                                                           |
| 8 <sup>th</sup> Grade | <ul> <li>Order of Operations</li> <li>Distributive Property to<br/>Simplify Expressions</li> <li>Collect Like Terms to<br/>Simplify Expressions</li> </ul>                                                                                         | <ul> <li>Mixed Operations with<br/>Exponents</li> <li>Simplify Expressions</li> <li>Solve for Slope &amp; Intercept<br/>using Linear Function</li> </ul>                                                               | <ul> <li>Linear Combinations to Solve<br/>Equations</li> <li>Substitute Equation to Solve<br/>Linear Equations</li> <li>Comparison Method to Solve<br/>Linear Equations</li> </ul>                                                                                                            |

Screening Measures Used in Spring Math

## Screening Accuracy Must Be Strong

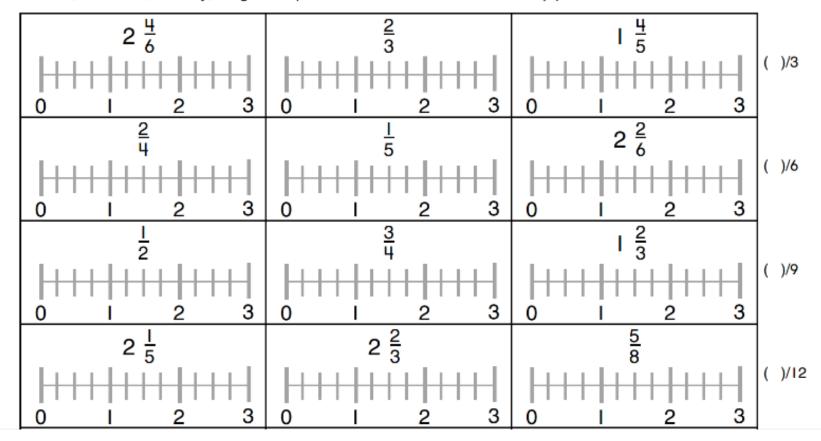


| Teacher: |  |
|----------|--|
| Grade:   |  |
| Student: |  |

#### Count Objects 1-20, Circle Answer

Date: 11/10/2016 (version: e210)

Say, "Let's do the first problem together. How many dots do we have? Let's count and see. [Count the dots in the first problem]. How many? That's right, we have [say number] of dots. Your job is to find that number over here and circle that number. When I tell you to begin, try to work as many as you can before the time is up. Be sure to count silently, inside your head." Set timer for one minute. Say, "Ready? Begin." After the timer sounds, say, "Stop. Hold your paper up in the air so I can pick it up."


| • • • • • • • • • • • • • • • • • • • | 11 | 13 | 5  | 4  |
|---------------------------------------|----|----|----|----|
| O O O O O O Click to add text         | 7  | 10 | 6  | 21 |
| •••••                                 | 4  | 9  | 18 | 13 |
| •••••                                 | 11 | 10 | I  | 14 |
| •••••••••                             | I  | 7  | 4  | 11 |

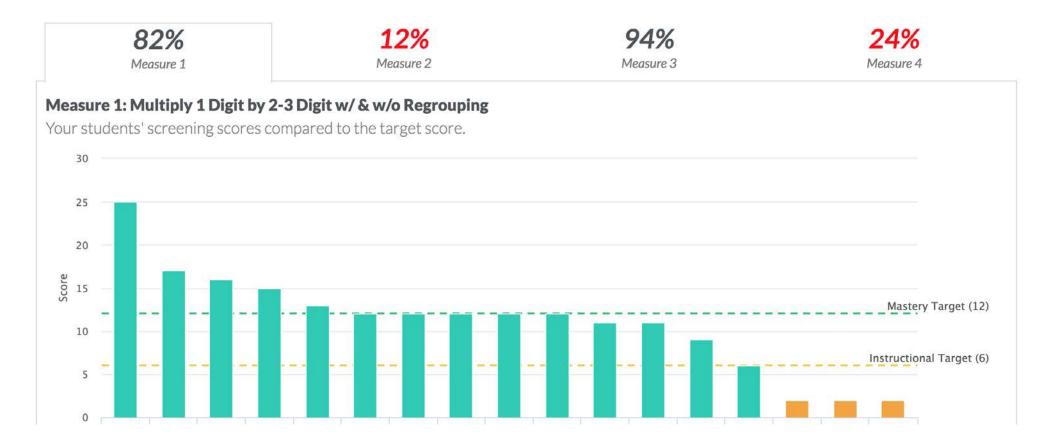
| Teacher: |  |
|----------|--|
| Grade:   |  |
| Student: |  |

#### Place Fractions on Number Line (denominators: 1,2,3,4,5,6,8,10)

Date: 11/10/2016 (version: d985)

For these problems, you will locate and mark the fraction quantity on the number line. This number line begins at 0 and ends at 3. Mark the quantity with a dot. Let's do the first one together." Work the first problem to verify student understanding. "When I say begin, start with the second problem on the first row and work across. Don't skip any problems. Work as many problems as you can before the time is up. Do you have any questions?" Set timer for 2 minutes, start timer, and say, "Begin." Stop student after 2 minutes and count up problems correct.




#### Spring 2017-18 Screening Results

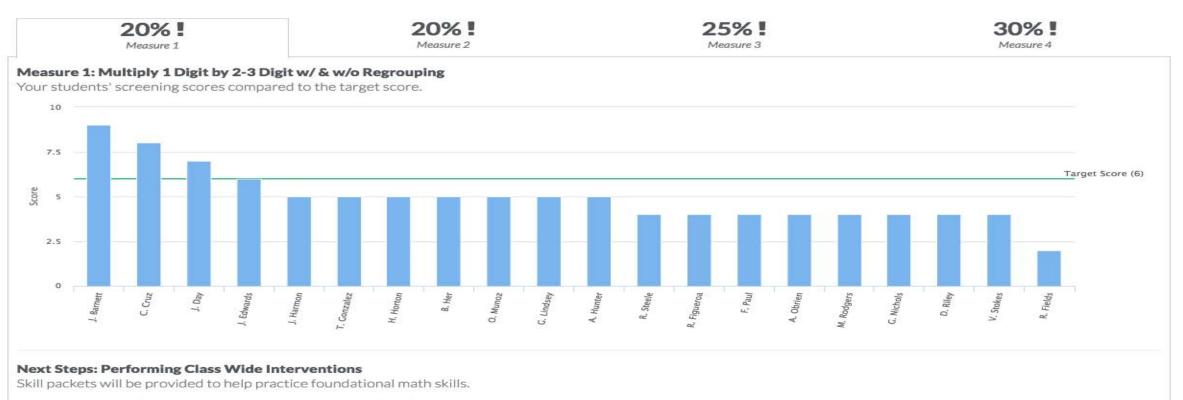
The results are in. Let's take a look...

#### **Classroom Performance**

6% of your class reached the target on all of the screening assessments. Extra practice will help you reach mastery at this grade level.

The classwide intervention has already been started.



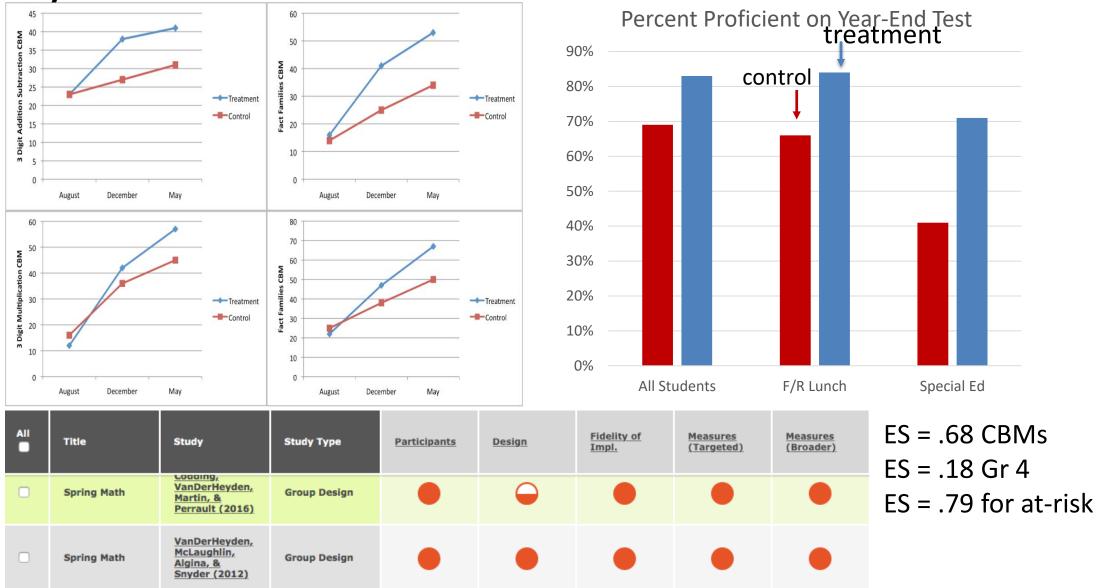

### Use Class-wide Intervention if Needed

Classwide Intervention Screening Students

#### **Classroom Performance**

80% of your class appears to be at risk and in need of intervention to benefit from grade-level instruction.

We call this a classwide problem and recommend a classwide intervention.




As you complete skills you will receive new packets and be able to view your class' skill progress.

## How-To for Classwide Intervention

Not your mama's drill & kill intervention

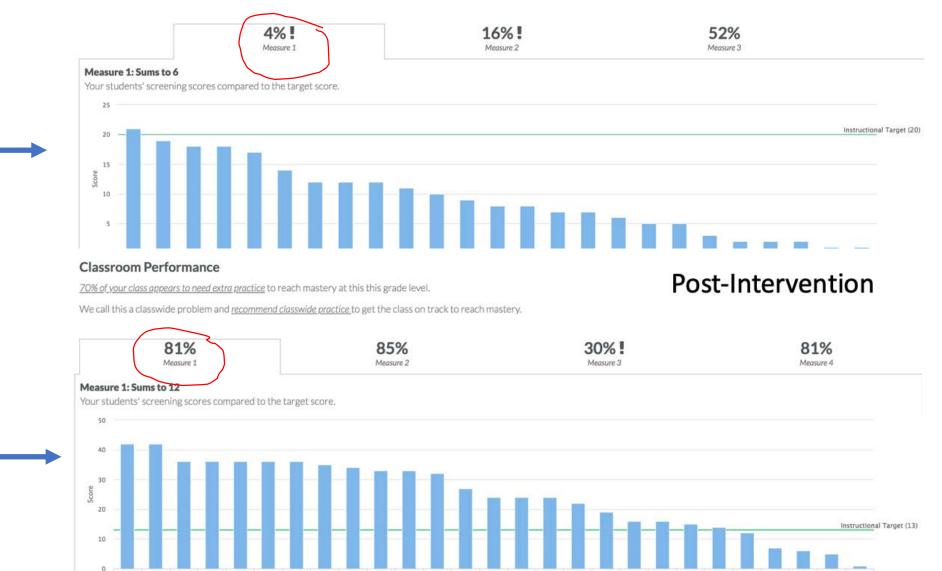
### Why Classwide Intervention?



http://www.intensiveintervention.org/chart/instructional-intervention-tools (NCII)

#### High-Yield Action: Use Class-wide Intervention

#### **Classroom Performance**


Pre

Post

96% of your class appears to need extra practice to reach mastery at this this grade level.



We call this a classwide problem and recommend classwide practice to get the class on track to reach mastery.



## When Managed, Classwide Intervention Works!

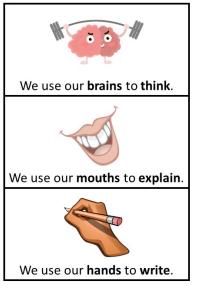
|                                                  | Absolute Risk<br>Reduction | Number Needed<br>to Treat |                               |
|--------------------------------------------------|----------------------------|---------------------------|-------------------------------|
| All Students                                     | 15%                        | 7                         | \$377.44 to prevent 1 failure |
| Students receiving F/R Lunch                     | 18%                        | 6                         |                               |
| Students receiving Special<br>Education Services | 39%                        | 3                         |                               |
| Low-Performing Students                          | 44%                        | 3 ———                     | \$161.76 to prevent 1 failure |

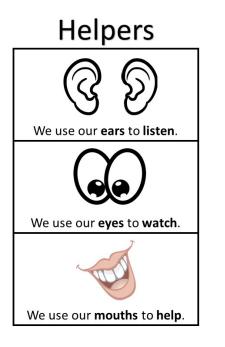
Source: VanDerHeyden, McLaughlin, Algina, & Snyder, 2012; VanDerHeyden & Codding, 2015

## Think about Return on Investment

#### Per Student, Per 1 SD gain in outcome

**Incremental Cost Effectiveness Ratios** 


ICER < \$80.00 \$70.00 \$60.00 \$50.00 \$40.00 \$30.00 \$20.00 \$10.00 \$0.00 **Classwide Math Intervention** PALS Fraction Face Off ICER


"Changing math curricula as an approach for whole-school intervention when large numbers of students do not achieve proficiency is more costly than targeted, preventative math intervention" (Morsi et al.)

#### **Suggested Student Pairings**

| Adams, Maximus    | Goyette, Dangelo   |
|-------------------|--------------------|
| Homenick, Darrin  | Rolfson, Keegan    |
| Lehner, Salvador  | Blick, Jerald      |
| Collins, Lamont   | Waelchi, Jacinthe  |
| Reichert, Marlen  | Skiles, Daphnee    |
| Greenholt, Clovis | Kozey, Monserrat   |
| Kreiger, Selena   | Turcotte, Kayleigh |
| Larson, Kobe      | Champlin, Gertrude |

#### Workers





#### Intervention Protocol Classwide Fact Families: Add/Subtract 0-9 Student: Grade: 01

Teacher: Paul Muyskens Class name: I Mathematics (-Hayden-) Date: 1/22/2019

#### Classwide Math Intervention

Preparation:

- · This is your master set of materials for the week.
- Make 1.5 copies of the practice sheets Day 1-5 for each student in your class (ex. if you have 20 students make 30 copies). Each student will have one copy for independent practice, while each pair of students will have one copy for paired practice.
- . If you are using flashcards to practice, you can make only I copy per student.
- . To set up your student pairs click on "Students" in your dashboard, then "Suggested Student Pairs."
- . Identify the first "Worker," which should be the higher-performing student. This student will always work first.
- Say, It's time for Spring Math. Please get together with your math partner. Please take out your practice materials, have your colored pen and pencil out, and show me you are ready.
- Say, Workers, your job is to work as many problems correctly as you can. As you work, be sure to talk through the problem so your partner can HEAR and SEE you solve the problem. Use a quiet voice while you work.
- Say, Helpers, your job is to follow along, listen and watch as the worker is working problems. If you see an error, speak up! Say, "Stop, Let's check this one."

You should give the worker a hint, point to the exact error, but don't give them the answer. See if the worker can fix the error.

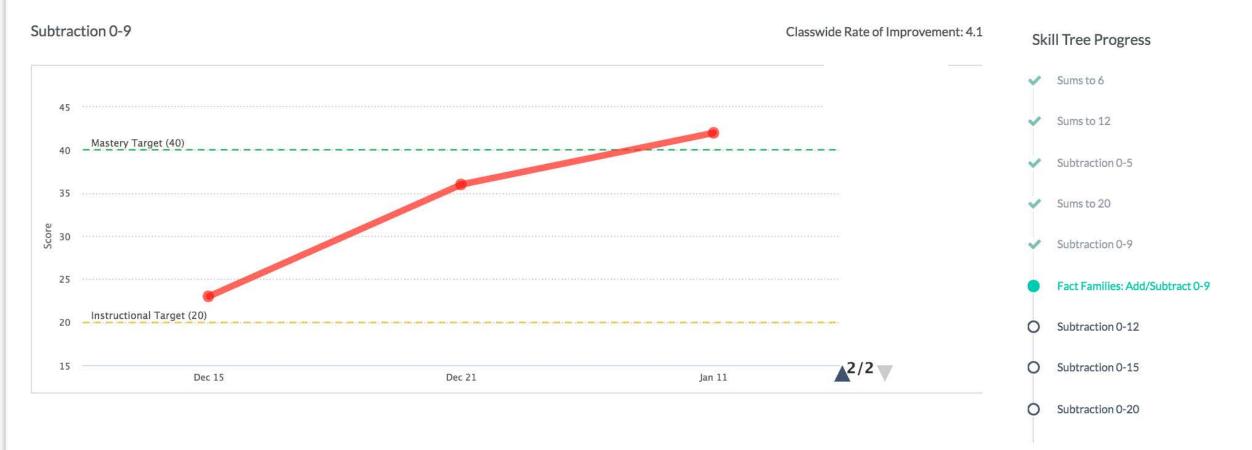
If the worker is stuck, give the answer but solve it aloud so the worker knows how you got that answer. If you get really stuck, circle the problem and ask me for help.

Set the timer for 3 minutes.

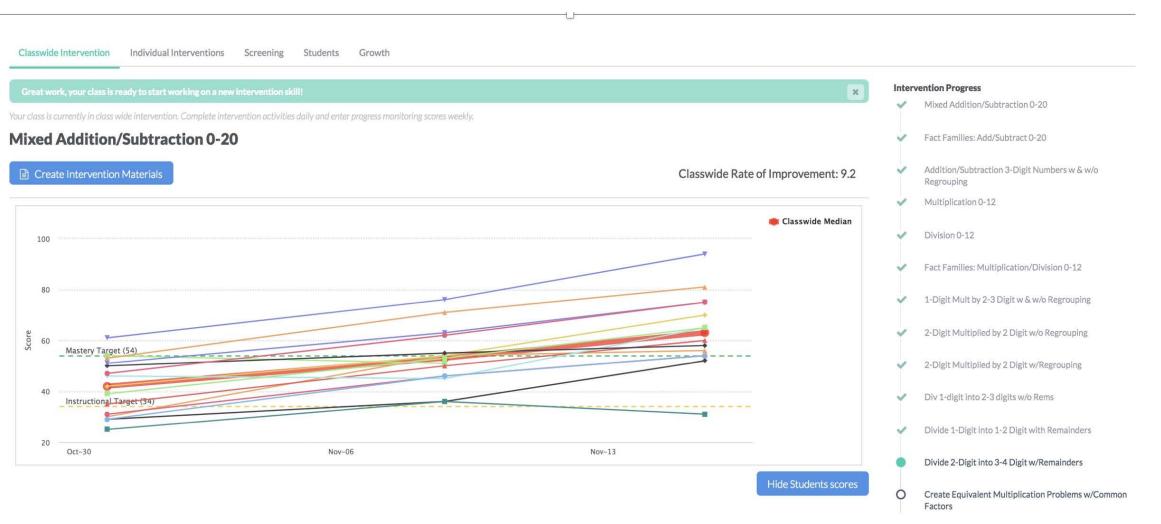
Say, Remember, your goal is to work as many problems as possible with 100% accuracy. Ready? Begin!Start the timer when you say Begin.

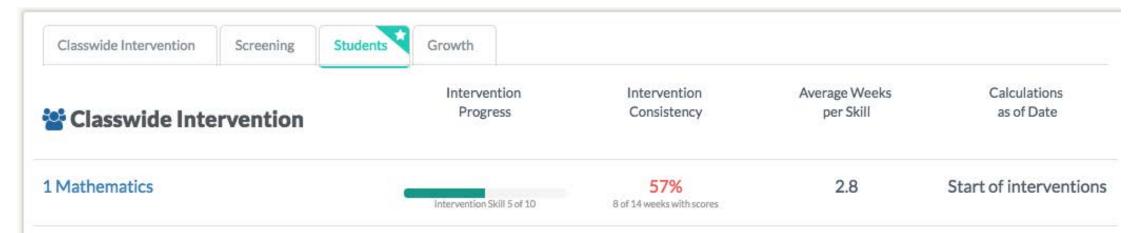
## Active Ingredients

- Modeling
- Practice for the right level of difficulty (opps to respond, complete learning trials)
- Corrective feedback & repetition loop
- Goal setting
- Delayed error correction w verbal rehearsal component
- Reward
- Advances difficulty based on proficiency







#### Note: The start Winter screening!

#### **Classwide Intervention Progress**



## Improves Learning, but Makes it Clear Who Needs More





#### Eligible for Individual Intervention

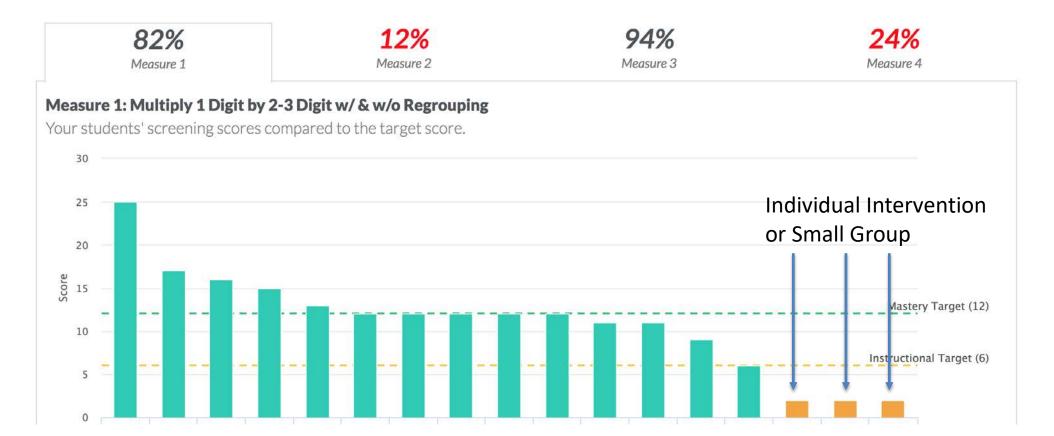
The following students would benefit from individual interventions. If you have additional capacity, you may choose to begin interventions with some of these students. Intervention takes 10-15 minutes a day per student, so we recommend selecting 1 or 2 students to work with.

| Am        | anda  |        |
|-----------|-------|--------|
|           | Score | Target |
| Measure 1 | 28    | 13     |
| Measure 2 | 41    | 20     |
| Measure 3 | 18    | 20     |
| Measure 4 | 18    | 20     |

|           | Baul  |        |
|-----------|-------|--------|
|           | Score | Target |
| Measure 1 | 31    | 13     |
| Measure 2 | 26    | 20     |
| Measure 3 | 11    | 20     |
| Measure 4 | 24    | 20     |

|           | Vicki |        |
|-----------|-------|--------|
|           | Score | Target |
| Measure 1 | 31    | 13     |
| Measure 2 | 49    | 20     |
| Measure 3 | 18    | 20     |
| Measure 4 | 15    | 20     |

How to For Small-group & Individual intervention

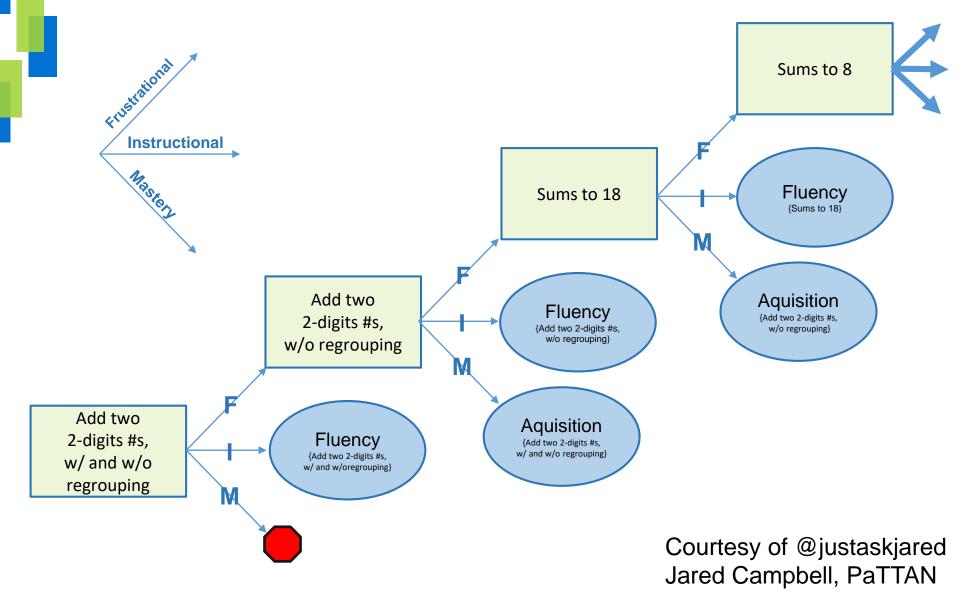

#### Spring 2017-18 Screening Results

The results are in. Let's take a look...

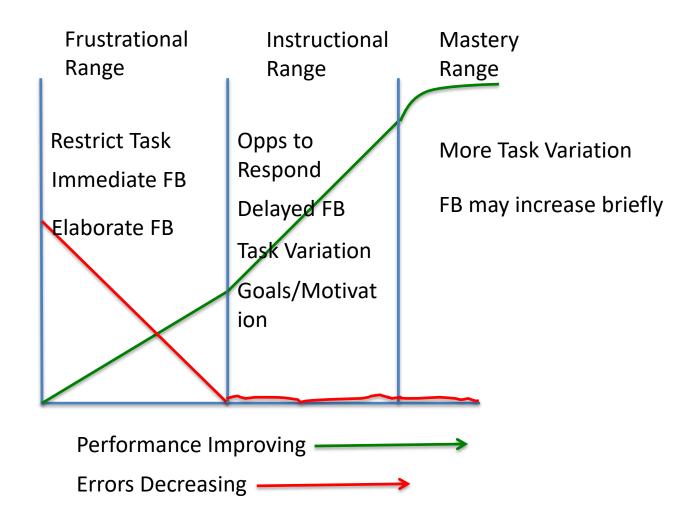
#### **Classroom Performance**

6% of your class reached the target on all of the screening assessments. Extra practice will help you reach mastery at this grade level.

The classwide intervention has already been started.




# You will Need a Range of Interventions & Data to Connect them to the Student


| Proce                             | Procedural & Conceptual Understanding for Middle School Math |                   |                       |                 |                          |       |  |
|-----------------------------------|--------------------------------------------------------------|-------------------|-----------------------|-----------------|--------------------------|-------|--|
| Fluency-Bu                        | uilding                                                      |                   | Acquisition           |                 |                          |       |  |
| Classwide<br>Math<br>Intervention | Timed<br>Trial                                               | Response<br>Cards | Cover Copy<br>Compare | Guided Practice | Incremental<br>Rehearsal | Bingo |  |

Not a real tree!

#### Assessment-Intervention Match



## The Instructional Hierarchy



## Use Data to Drive Individual Intervention

Generalization Child response is fluent: Child response is fluent: Child response is fluent: Child response is fluent:

Mastery Performance

#### Fluency

Child response is accurate but slow: Instructional Performance

#### Acquisition

Child response is inaccurate: Frustrational Performance Intervals of practice, opportunities to respond, delayed feedback, ensure reinforcement for more fluent performance.

> Salient cues, frequent & high-level prompting, immediate feedback, more elaborate feedback, sufficient exemplars of correct/incorrect, controlled task presentation.

When we convert improper fractions to mixed numbers, we will take a whole number quantity out of the fraction. When we do this, the numerator will be less than the denominator because the remaining fractional value will be less than 1.

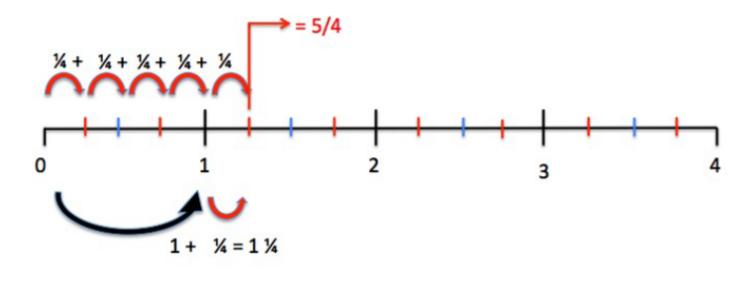
To convert the improper fraction to a mixed number, we:

Divide the numerator by the denominator, asking how many times the denominator can be divided into the numerator, and identify any remainder Write the remainder as the new numerator Copy the denominator from the original fraction.

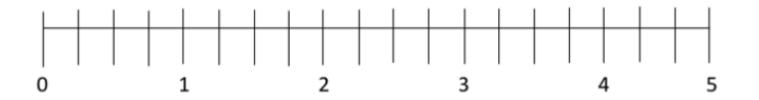
#### Day I

#### Acquisition Convert Improper Fractions to Mixed Numbers

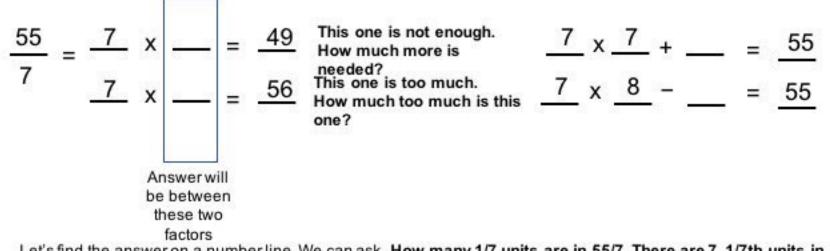
Student:


| Work Problem     | Check Answer                   | Match? | Work Problem       | Check Answer                      | Match? |
|------------------|--------------------------------|--------|--------------------|-----------------------------------|--------|
| $\frac{75}{7} =$ | $\frac{75}{7} = 10\frac{5}{7}$ |        | $\frac{95}{9} =$   | $\frac{95}{9} = 10\frac{5}{9}$    |        |
| $\frac{25}{4} =$ | $\frac{25}{4} = 6\frac{1}{4}$  |        | $\frac{109}{10} =$ | $\frac{109}{10} = 10\frac{9}{10}$ |        |
| $\frac{35}{4} =$ | $\frac{35}{4} = 8\frac{3}{4}$  |        | $\frac{13}{3} =$   | $\frac{13}{3} = 4\frac{1}{3}$     |        |

#### **Build Conceptual Understanding**


Complete several of these each day with the child, encouraging the child to solve each problem aloud:

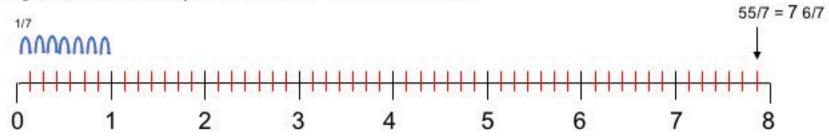
**Play War:** Make 20 cards with mixed numbers (2 copies of each for a total of 40 playing cards). Each player turns over a card and the player with the greater quantity wins both cards. If the values are tied, then each player places three cards face-down and turns over the fourth card. The player with the higher value card tc all the cards. The object of the game is to win all the cards.


Using the day's practice problems, have the student draw each mixed number on a number line. Several number lines are provided below the sample problem. Help the student choose the best one.



This one shows 1/4 units.




This one shows 1/3 units.



Let's find the answer on a number line. We can ask, How many 1/7 units are in 55/7. There are 7, 1/7 th units in each increment of 1. Let's count and check (1/7 + 1/7 + 1/7 + 1/7 + 1/7 + 1/7 = 7/7 or 1).

So we want to multiply 7 x (7/7) which gives us 49/7. How many more 1/7<sup>th</sup> units do we need to get to 55? That's right, 6 more 1/7<sup>th</sup> units will get us to 55/7 or 55 1/7<sup>th</sup> units. We can count and check if we want.

Can you see another way to get to 55/7 that's easier and faster to find on the number line (hint, look above)?



Right, 8 x 7/7 is 56/7 so just one more 1/7th unit than we need.

Let's practice converting whole numbers into fraction base unit quantities. We've just learned how to convert 7 into 1/7 units. We multiplied 7/1 x 7/7 to get 49/7. This makes sense because we know,  $49 \div 7 = 7$ .

Let's try some more. Write the equation and then solve.

Change 5 into 1/4 units: \_\_\_\_\_ x \_\_\_\_ = \_\_\_\_

Change 3 into 1/6 units: \_\_\_\_\_ x \_\_\_\_ = \_\_\_\_

Change 4 into 1/8 units: \_\_\_\_\_ x \_\_\_\_ = \_\_\_\_

Change 2 into 1/10 units: \_\_\_\_\_ x \_\_\_\_ = \_\_\_\_

Change 8 into 1/5 units: \_\_\_\_\_ x \_\_\_\_ = \_\_\_\_

Change 3 into 1/7 units: \_\_\_\_\_ x \_\_\_\_ = \_\_\_\_

Let's think more about improper fraction quantities. A few moments ago, we looked at 55/7 on the number line. We can see that 55/7 is between 7 and 8 on the number line. 55/7 is more than 7 but less than 8. Let's complete the following statements to make them true. There are several answers that can be correct for these questions, but for today, I want you to choose the closest whole number on either side of the improper fraction quantity. If you want, you can draw a number line next to each statement to prove your conclusion.

10/8 is more than \_\_\_\_\_ but less than \_\_\_\_\_.

Copyright 2019 Dr. Amanda M. VanDerHeyden. All rights reserved.

14/5 is more than \_\_\_\_\_ but less than \_\_\_\_\_.

10/3 is more than \_\_\_\_\_ but less than \_\_\_\_\_.

17/5 is more than \_\_\_\_\_ but less than \_\_\_\_\_.

19/4 is more than \_\_\_\_\_ but less than \_\_\_\_\_.

26/5 is more than \_\_\_\_\_ but less than \_\_\_\_\_.

Fill in the missing number to solve. Try to solve these by thinking of each quantity on a number line.

| 44/9 + = 5 |
|------------|
| 14/5 + = 3 |
| 19/5 + = 4 |
| 9/5 + = 2  |
| 13/7 + = 2 |
| I 0/8 = I  |
| 14/3 = 4   |
|            |

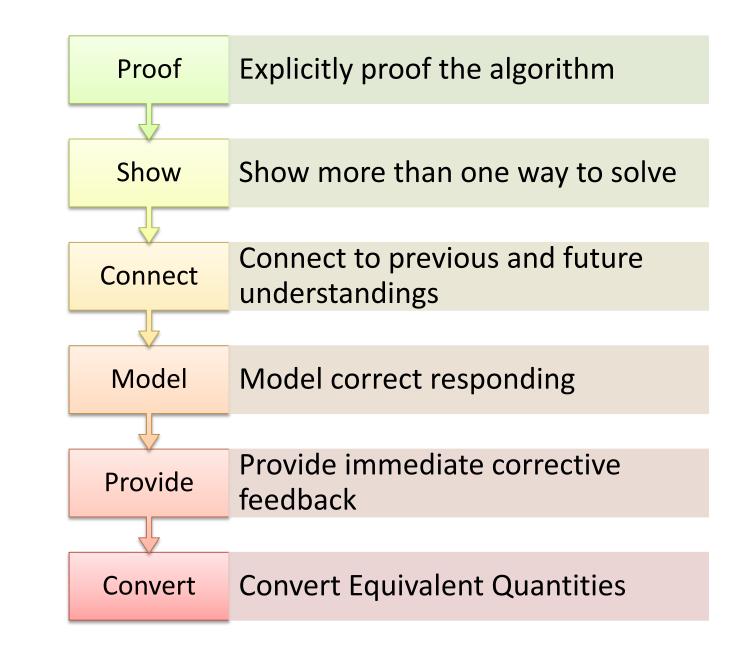
16/5 - \_\_\_\_ = 3

Why is the numerator larger than the denominator when a mixed number is converted to a fraction? Is the numerator always greater than the denominator when a mixed number is converted to a fraction?

Can the numerator ever be greater than the denominator if the fraction is in its simplest form?

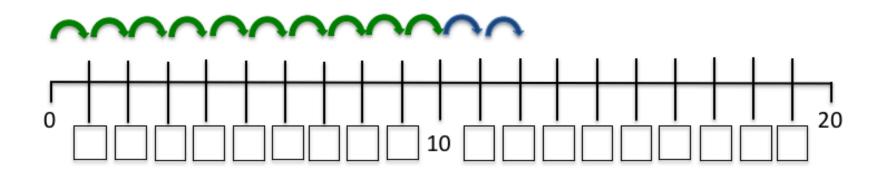
Using problems from the day's practice materials, ask the student to check to see that an improper fraction was correctly converted to a mixed number by asking the student to convert the improper fraction back to a mixed number.

Ask, Why is it useful to convert an improper fraction to a mixed number? (Hint: easier to understand quantity).




# What Active Ingredients Do You See?




# What Active Ingredients Do You See?

# Look for Interventions that



Can you find another way to write 10? If the child cannot answer, prompt, Here is the 5. How many must we add to 5 to get 10? Let's count and check. Can you find another way?

Now let's solve 10 + 2. Let's find the 10 on the number line. If we count up 2 units from 10, what is the sum? Show the child how to count from zero to 12. Then show the child how to start with 10 and count up 2 units.



Explicitly proof the algorithm

## Show More than One Way to Solve

#### Let's find the "doubles" inside these problems.

6 = \_\_\_\_ + \_\_\_\_ 8 = \_\_\_\_ + \_\_\_\_ 12 = \_\_\_\_ + \_\_\_\_ 16 = \_\_\_\_ + \_\_\_\_ 20 = \_\_\_\_ + \_\_\_\_ Now we are warmed up. Fill in the blanks for each problem below. You must include a double.

 $5 = 2 + \____ + \_____$   $9 = 4 + \____ + \_____$   $17 = 8 + \____ + \_____$   $3 = 1 + \____ + \_____$   $7 = 3 + \____ + \_____$   $11 = 5 + \____ + \_____$   $15 = 1 + \____ + \_____$   $19 = 3 + \____ + \_____$   $19 = 1 + \____ + \_____$ 

Now let's find 10's inside these problems to find the sums. Fill in the missing number and remember, you must make a 10.

 $12 = \_ + \_$   $14 = \_ + \_$   $13 = \_ + \_$   $8 + 8 + 2 = 10 + \_$   $5 + 5 + 8 = 10 + \_$   $4 + 4 + 6 = 10 + \_$   $13 + 3 = \_ + \_ + \_$   $14 + 4 = \_ + \_ + \_$ 

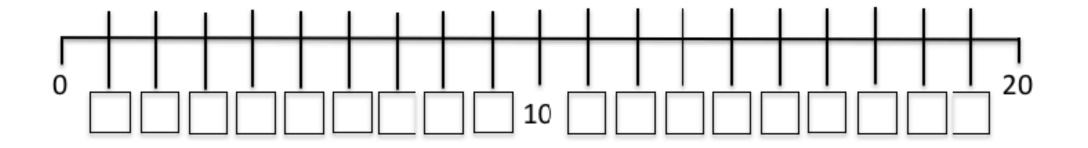
Start with a set of counters. Say, We are going to add objects. Here are 20 (count out 20). Let's make 20 twenty different ways. Guide the child to divide the counters into two sets of quantities (e.g., 10 + 10, 19 + 1, 15 + 5) and count to find 20.

Combine the full set of 20 counters into a single set. Pull out 1 counter and ask the child to see how many we must add to 1 counter to equal 20. After the child responds correctly, remove 10 counters and ask the child to see how many we must add to the set of 10 to equal 20. Do the same for numbers 11-19 in random order.

Use the problems from the day's practice sheet and say, Draw two ways to solve this problem. Guide the child to write as hashmarks, to solve on a number line, or to write as an equivalent equation.

Can you find another way to write 10? If the child cannot answer, prompt, Here is the 5. How many must we add to 5 to get 10? Let's count and check. Can you find another way?

# Connection to Previous Understanding


Now let's find 10's inside these problems to find the sums. Fill in the missing number and remember, you must make a 10.

 $12 = \_ + \_$   $14 = \_ + \_$   $13 = \_ + \_$   $8 + 8 + 2 = 10 + \_$   $5 + 5 + 8 = 10 + \_$   $4 + 4 + 6 = 10 + \_$   $13 + 3 = \_ + \_ + \_$  14 + 4 = - + - + = +

# **Connection to Future Understanding**

Say, Show me three ways to make 15. Help the child show that 15 can be represented as 1 + 14, 15 + 0, 7 + 8, 10 + 5, adding 1's only,

and so on. Use the number lines below to find the answers as needed.



## **Convert Quantities**

### Say, We are going to practice adding numbers. Let's do the first one together. What number is this?

Draw hash marks next to the top number in the problem and say the number name aloud.

Then say, That's right. What number is this? while pointing to the bottom number. Draw that number of hash marks for the child.

Say, Let's add the numbers together. Guide the child to count the hash marks aloud then say, Write the answer here (point to box).

Slide down the card covering the answer column to show the correct answer and ask the child, **Is the number the same? Yes, you** got it right!

Show the child how to make a check mark in the box for a correct match.

Once the child can independently draw and count hash marks, show the child how to identify the larger number and count up from that number to get the answer (so given 3 + 2, the child will say "3" and then count up two places using his or her fingers if needed saying aloud "4, 5" to get the answer).

Some children may start counting up from I regardless of the size of the first number and there is no need to interrupt their use of this strategy.

Once the child is responding accurately and confidently, simply show the child that he or she can start with the larger number in his head and begin counting up from that number.

# **Explicit Modeling**

- Ensure that the child answers each problem correctly. Ensure that the child writes the number in the box without peeking at the answer box. Ensure that the child lifts the cover to check his or her answer.
- Ensure that the child makes a check mark in the "Match" box for correct answers.
- □ If there is not a match (the child's response was incorrect), guide the student to count again and assist as needed to ensure correct counting/adding.

#### Troubleshoot

Children should be able to fluently read numbers, be able to count fluently from I-20, be able to count sets of objects and specify the number of objects, and understand that counting up from 0 to 20 indicates greater quantities to benefit maximally from this intervention.

Once the child can fluently draw and count both sets of hash marks to obtain the sum, guide the child to identify the larger number and count up.

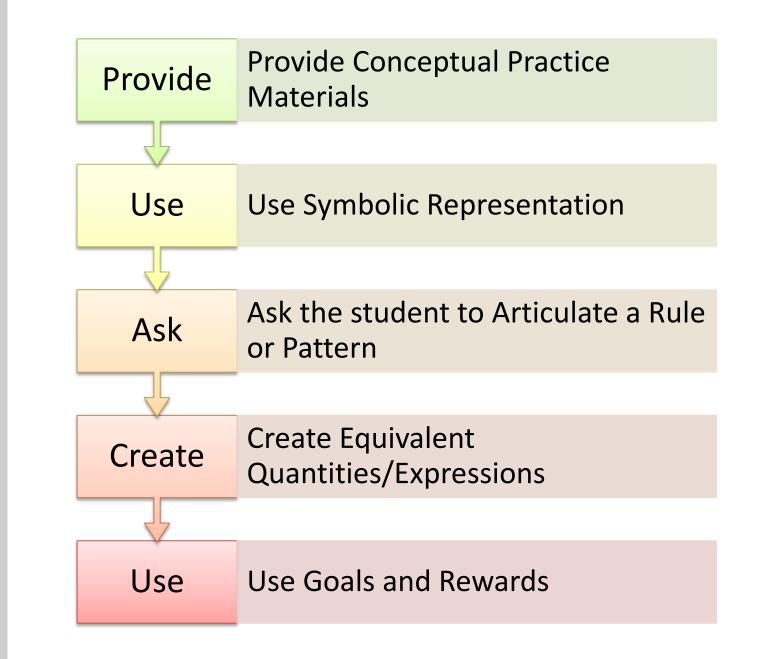
If the child cannot readily identify the larger number, have the child circle the larger number in the problems on the practice page.

If the child continues to struggle to identify the greater number in the set, then consider adding the "Establish Quantity Discrimination" intervention to this intervention.

The purpose of timing the intervention period is to contain the intervention to a focused and productive 10-minute period.

This intervention requires direct assistance from the teacher. The teacher should sit beside the child and actively monitor each response to ensure the student is completing each problem accurately.

If a mistake is made, the teacher should guide the student to "try again" and provide prompts as needed to ensure correct responding.


For example, the teacher might say, Stop. 12 + 7 does not equal 18, let's try again.

If the child does not respond correctly, the teacher might say, Which number is larger? 12, that's right. So let's count seven up from 12.

If the child does not respond correctly the teacher might model, saying, "12" then holding one finger up at a time, 13, 14, 15, 16, 17, 18, 19. So what is 12 + 7? 19, that's right. Let's do the next one.

# Immediate Corrective Feedback

# Look for Interventions that



Day I Acquisition Sums to 20

Student:

| Work Problem | Check Answer    | Match? | Work Problem    | Check Answer   | Match? |
|--------------|-----------------|--------|-----------------|----------------|--------|
| 14<br>+ 3    | 4<br>+ 3<br>  7 |        | 3<br><u>+ I</u> | 3<br>+ 1<br>4  |        |
| 5<br>+ 0     | 5<br>+ 0<br>  5 |        | <br>+   7       | <br>+ 17<br> 8 |        |
| 16           | 16              |        | 19              | 19             |        |

# Symbolic Representation

Ask the child, When we add two numbers that are greater than zero, will the answer be greater than or less than this number(point to the top number)?

Will the answer be greater than or less than this number(point to the bottom number)?

```
When we add zero to another number, what will the answer be? Can you explain why?
```

Write an addition problem with a sum of 10, using the greatest number possible as one of the two numbers you are adding. (Answer 10 + 0)

Find two doubles in the problem 6 + 1 (Answer: 2 + 2 + 3 and 3 + 3 + 1).

Write an addition problem to show 10, using only the number 2.

# Asks Student to Articulate Rule or Pattern

### Create Equivalent Quantities

Let's find the "doubles" inside these problems.

6 = \_\_\_\_\_ + \_\_\_\_\_ 8 = \_\_\_\_\_ + \_\_\_\_\_ 12 = \_\_\_\_\_ + \_\_\_\_\_ 16 = \_\_\_\_\_ + \_\_\_\_\_ 20 = \_\_\_\_\_ + \_\_\_\_\_

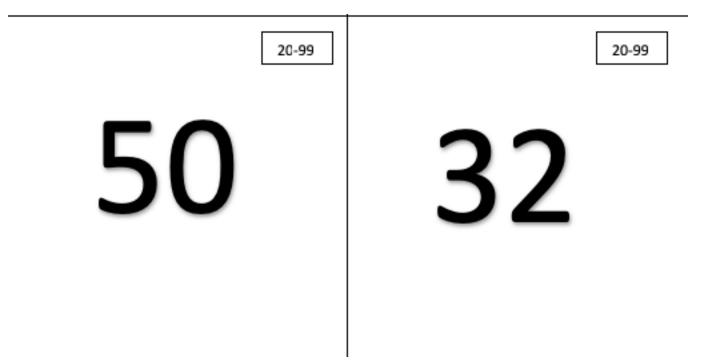
Now we are warmed up. Fill in the blanks for each problem below. You must include a double.

 $5 = 2 + \_\_\_ + \_\_\_$   $9 = 4 + \_\_\_ + \_\_\_$   $17 = 8 + \_\_\_ + \_\_\_$   $3 = 1 + \_\_\_ + \_\_\_$   $7 = 3 + \_\_\_ + \_\_\_$   $11 = 5 + \_\_ + \_\_\_$   $15 = 1 + \_\_\_ + \_\_\_$   $19 = 3 + \_\_\_ + \_\_\_$   $19 = 1 + \_\_\_ + \_\_\_$ 

Now let's find 10's inside these problems to find the sums. Fill in the missing number and remember, you must make a 10.

 $12 = \_\_\_ + \_\_\_$   $14 = \_\_ + \_\_\_$   $13 = \_\_ + \_\_\_$   $8 + 8 + 2 = 10 + \_\_\_$   $5 + 5 + 8 = 10 + \_\_\_$   $4 + 4 + 6 = 10 + \_\_\_$   $13 + 3 = \_\_ + \_\_ + \_\_$   $14 + 4 = \_\_ + \_\_ + \_\_$ 

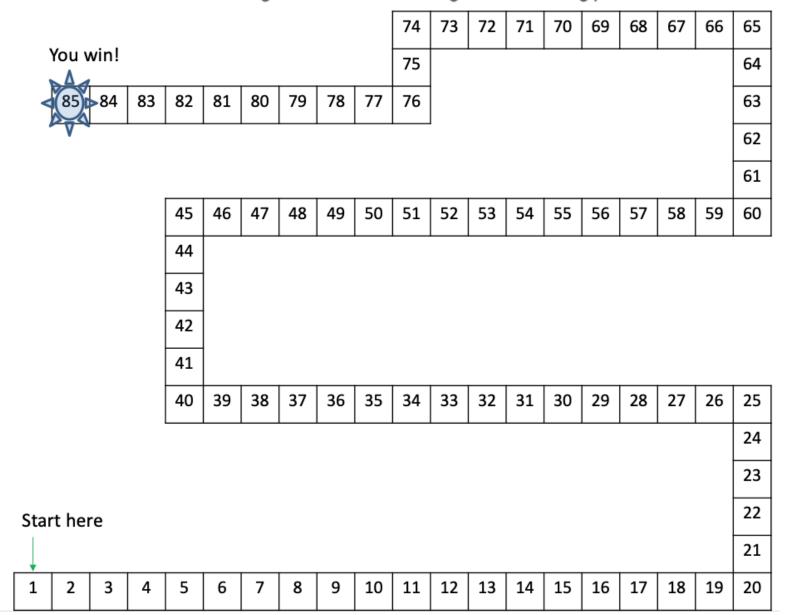
Count the number of correctly completed problems. Write this number on the Progress Monitoring Chart.


Allow the child to select a small reward from the treasure chest for beating his or her last best score.

| Monitor Progress<br>Establish Sums to 20<br>6/10/2018 |                                |  |
|-------------------------------------------------------|--------------------------------|--|
|                                                       | Monitoring Student Progress    |  |
|                                                       | CHART FOR                      |  |
|                                                       | Weekly Goal:                   |  |
| DAY I                                                 | My best score is:              |  |
|                                                       | My score on the timed test is: |  |
|                                                       | Did I beat my score?           |  |

# Use of Goals and Rewards

### Use Games to Build Fluency!


Play War: Make a stack of cards with 20 randomly selected numbers between 20 and 99 (2 of each) and play "war." Each player turns over a card and the player with the higher-value number wins both cards. If the values are tied, then each player places three cards face-down and turns over the fourth card. The player with the higher value card takes all the cards. The object of the game is to win all the cards.



**Play 3-in-a-row bingo:** Here is another game that can be played as a single player or with multiple players. Each player needs a number grid (see below). Using the day's practice problems and answer key (don't show the student the answer key), just call out a problem and the student will try to answer verbally and make an X over the number on their grid. The object is to get three in a row in any direction to win the game. If needed, the student can write the problem to solve it. If the student makes an error solving the problem, then the he or she may not place an X on the grid for that turn.

| Ω===== | 1   | 1   | 1   | 1   | 1   |     |     | 1   | 1   |     | 1   | 1   |     |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1      | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  |
| 15     | 16  | 17  | 18  | 19  | 20  | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  |
| 29     | 30  | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 40  | 41  | 42  |
| 43     | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  | 55  | 56  |
| 57     | 58  | 59  | 60  | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  |
| 71     | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84  |
| 85     | 86  | 87  | 88  | 89  | 90  | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  |
| 99     | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 |
| 113    | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 |
| 127    | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
| 141    | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 |
| 155    | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 |
| 169    | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 |
| 183    | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 |

Play Add & Take ten: Make a stack of 8 cards. Write, Add 10, Add 20, Add 30, Add 40 on the first four cards. Then write Add 10, Add 20, Add 30, Add 40 on the next four cards. Shuffle the cards. If you are playing single player, then pull a card and have the student start moving on the path to get to the winning space. If you draw a take card early in the game and there are not enough spaces to go back, just return to the start position of 1. This game is fun to play with two players. If you play with two players, print two copies of the board and take turns drawing cards to see who can get to the winning position first.



### Translate Verbal Expressions into Math Equations Matching Game

**Directions:** This game can be played with 2-4 players. Each of the numerical expression cards below has a matching verbal expression card. To play the game:

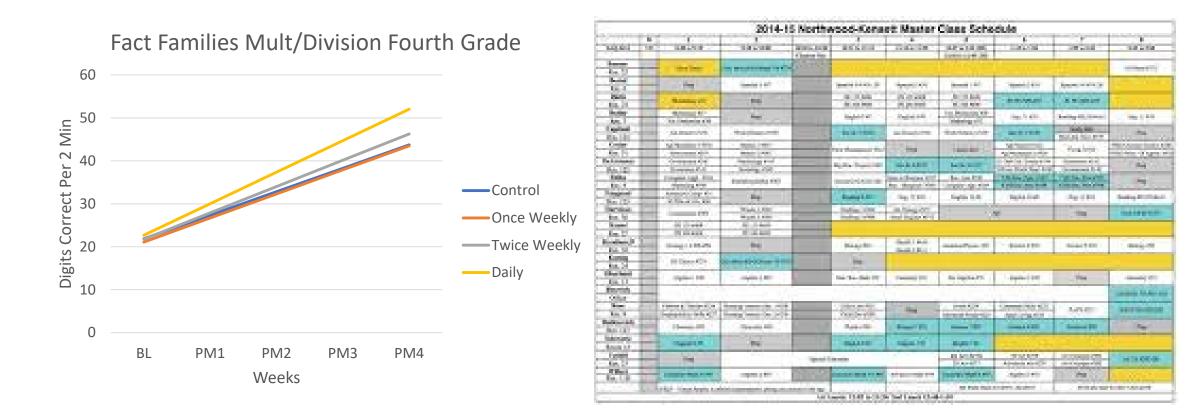
- Cut out the cards below.
- Shuffle all the numerical and verbal expression cards together.
- Deal each player a hand of 7 cards.
- When it is their turn the player draws one card.
- If the player has two cards that match (numerical and verbal expressions) they place the pair face up on the table.
- The first player to lay down all of their cards wins the game.

# 6 greater than a number is twice the number.

x + 6 = 2x

## Tactics to Look for

| Use manipulatives with K & 1                |
|---------------------------------------------|
| Use expanded notation                       |
| Convert to equivalent quantities            |
| Solve for missing value/unknown             |
| Graphics- number lines, area models, graphs |
| Find & Fix problems                         |
| True or False. Change to make true.         |


Solve word problems.

Solve a more challenging problem type.

Games for fluency building.

# Emphasis on High-Quality Implementation

## Dose What is Needed, Not What Fits Schedule



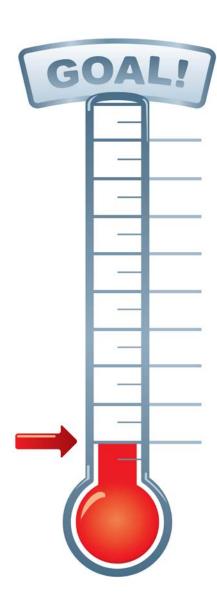
Codding, R., VanDerHeyden, Martin, R. J., & Perrault, L. (2016). Manipulating Treatment Dose: Evaluating the Frequency of a Small Group Intervention Targeting Whole Number Operations. *Learning Disabilities Research & Practice*, *31*, 208-220.



# Signs of an Effective Intervention

- Scores available for each week.
- Median increases each week within instructional groupings.
- Most students grow week over week.
- Very few students remain in the frustrational range.
- Few students require more intensive intervention.

Activity: NCII DBI Implementation Rubric https://intensiveintervention.org/resource/dbi-implementation-rubric-andinterview


## Don't Do This

### Add Components

### Innovation Not Working

Increases Complexity

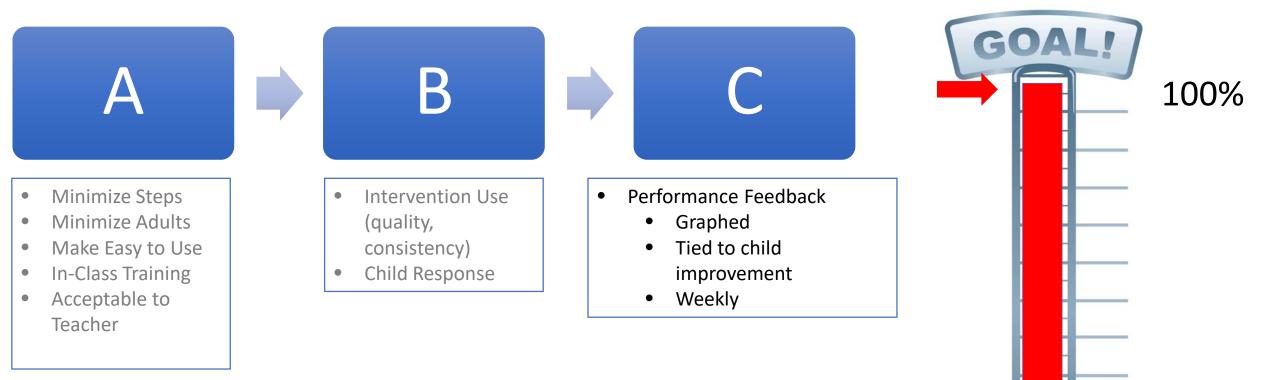
Decreases Probability of Correct Use



## Antecedent Supports



- Minimize Steps
- Minimize Adults
- Make Easy to Use
- In-Class Training
- Acceptable to Teacher


 Intervention Use (quality, consistency)

B

• Child Response



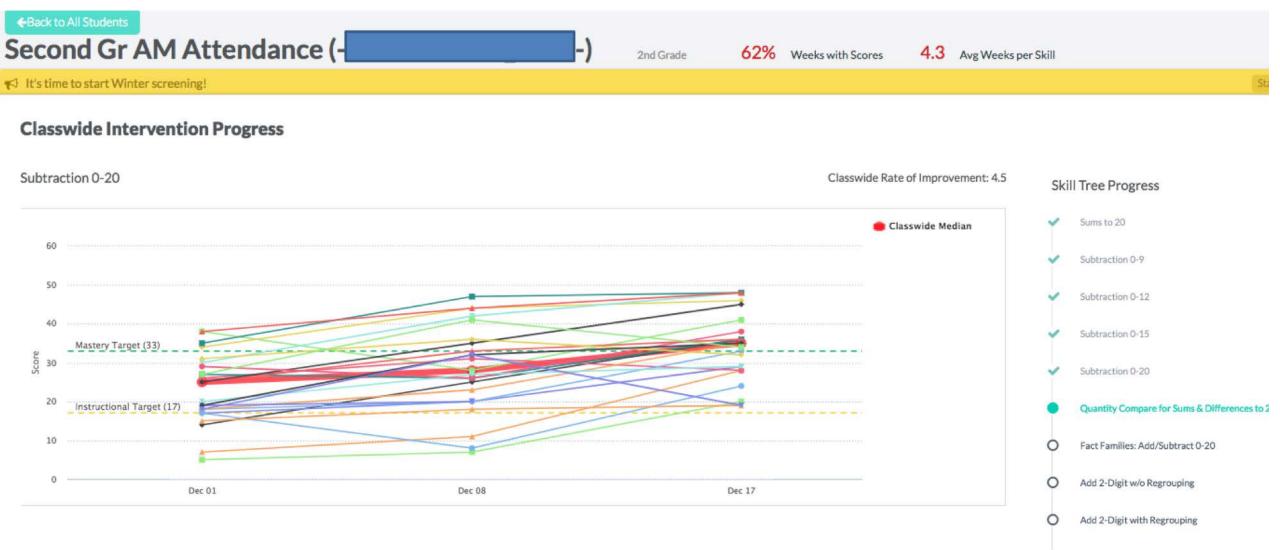
## With Consequent Supports



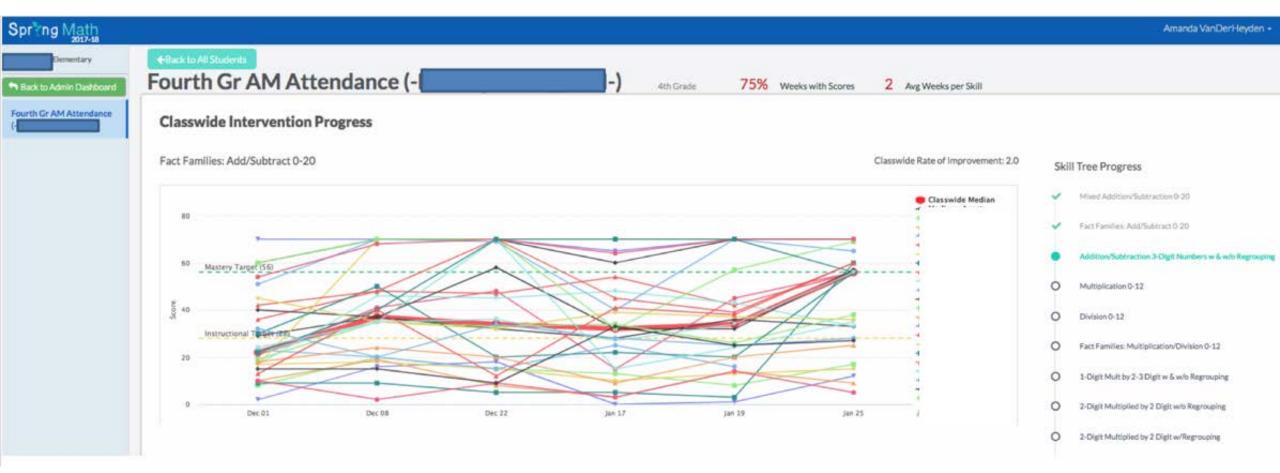
### Use Implementation Science

Plan to be present when intervention is started.

 $\frown$  Track intervention effects weekly.


When growth is weak, check-in with teacher by watching intervention being implemented.

Help troubleshoot any barriers and say that you will check in again next week.

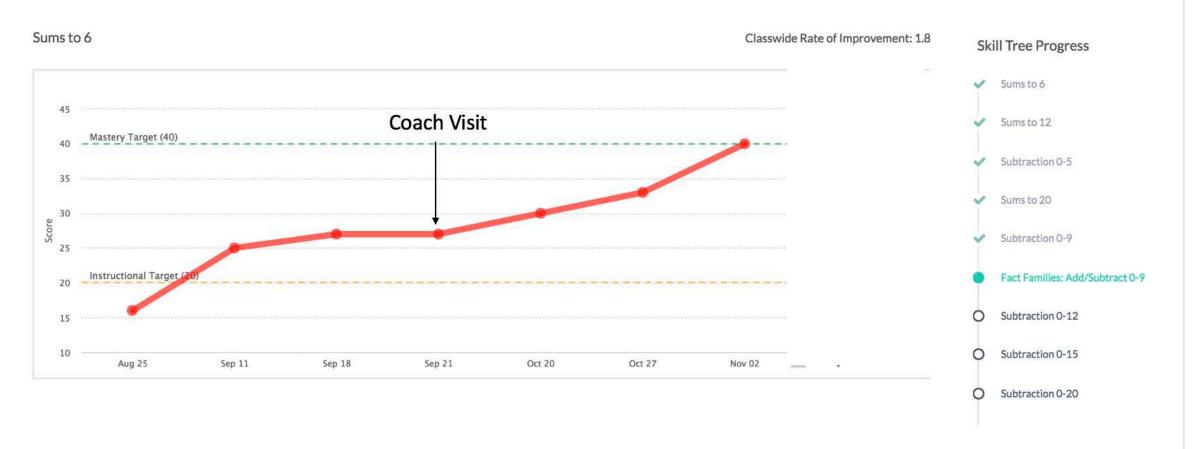

 $\overline{(1)}$ 

Wash, Rinse, Repeat.

## This is a High-Integrity Intervention



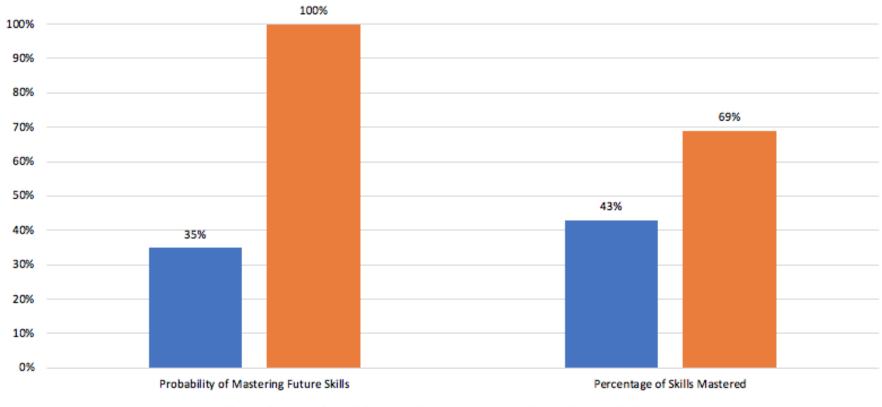
## This Growth Indicates a Problem




### **Classwide Intervention Progress**



### Note: The start winter screening!


### **Classwide Intervention Progress**



| Not doing the intervention.                                            | Make intervention use fail-proof: Make sure you have<br>materials. Make sure you know HOW to implement.<br>Make sure there is a scheduled time for intervention.                                                                                                                                                                                         |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Students do not know how to follow the classwide intervention routine. | Re-train the students. Show the students how to get int<br>working pairs, how to use the materials, how to provide<br>high-quality feedback, and how to be engaged.                                                                                                                                                                                      |
| Teacher is not completing all steps of the intervention.               | Review missed steps and understand rationale. Papers<br>must be scored during the intervention because that<br>provides feedback to the student, provides the error<br>correction opportunity, and provides goal attainment<br>opportunity. The error correction component is<br>important because it improves student accuracy for the<br>next session. |
| Children seem bored with the intervention.                             | Include rewards to motivate students. Display the median graph on dashboard for the class to see their growth. Be sure to set daily goals with the students!                                                                                                                                                                                             |

## Even Veteran Districts will Drift My students can't meet the mastery criterion, can we just move on?

Importance of Reaching Mastery for Each Skill During Classwide Intervention



Classes that Moved On Without Reaching Mastery
Classes that Reached Mastery

## What Must Leaders Know?

- What actions are underway?
- What are the results right now?
- Where is support needed?
- Are proximal indicators headed in the right direction?
- What are the barriers we can troubleshoot?

### 1st Grade ▼ Student Groups:

### **Summary Notes for 1st Grade**

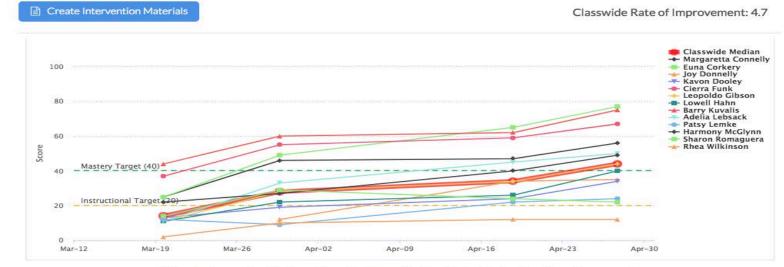
- Group 01#1 (Courseld-SectionId): Progress is fantastic. This class is progressing at 1.9 weeks per skill. We'd recommend asking this teacher what's working and if they have any tips for others!
- Group 01#1 (Courseld-SectionId): This class has been on one skill for over 4 weeks. It might be worth checking in with them.
- Group 01#1 (Courseld-SectionId): This class has low intervention consistency. This means scores aren't being entered in Spring Math each week. We would recommend checking with them to make sure the scores can be entered.

Show More

Group 01#2 (Courseld-SectionId): Progress is fantastic. This class is progressing at 1.8 weeks per skill. We'd recommend asking this teacher what's working and if they have any tips for others!

### **Classwide Interventions**

| Teacher (Group)                              | Total Students in<br>Interventions | Most recent<br>score entry | Intervention<br>Progress   | Intervention<br>Consistency       | Average Weeks<br>Per Skill | Calculations<br>as Of Date |   |
|----------------------------------------------|------------------------------------|----------------------------|----------------------------|-----------------------------------|----------------------------|----------------------------|---|
| D User (Group 01#1 (Courseld-<br>SectionId)) | 13                                 | 05/14/2018                 | Intervention Skill 9 of 10 | 76%<br>13 of 17 weeks with scores | 1.9                        | 01/10/2018                 | x |
| D User (Group 01#2 (Courseld-<br>SectionId)) | 13                                 | 05/10/2018                 | Intervention Skill 9 of 10 | 75%<br>12 of 16 weeks with scores | 1,8                        | 01/22/2018                 | x |
| D User (Group 01#3 (Courseld-<br>SectionId)) | 14                                 | 05/11/2018                 | Intervention Skill 9 of 10 | 82%<br>14 of 17 weeks with scores | 1.9                        | 01/09/2018                 | x |
| S Individual Interventio                     | ons                                |                            |                            |                                   |                            |                            |   |
| Teacher (Group)                              |                                    | Current Intervention       | Most recent<br>score entry | Intervention<br>Consistency       | Average Weeks<br>Per Skill | Calculations<br>as Of Date |   |
| D User (Group 01#1 (Courseld-Sect            | ionId))                            |                            |                            |                                   |                            |                            |   |
| Connelly, Margaretta 1234                    |                                    | Sums to 20                 | N/A                        | 0%<br>0 of 5 weeks with scores    | N/A                        | 08/31/2018                 | × |


D User (Group 01#2 (Courseld-SectionId))

#### Classwide Intervention Individual Interventions Screening Students Growth

Your class is currently in class wide intervention. Complete intervention activities daily and enter progress monitoring scores weekly.

### Fact Families: Add/Subtract 0-9

Winter To Spring



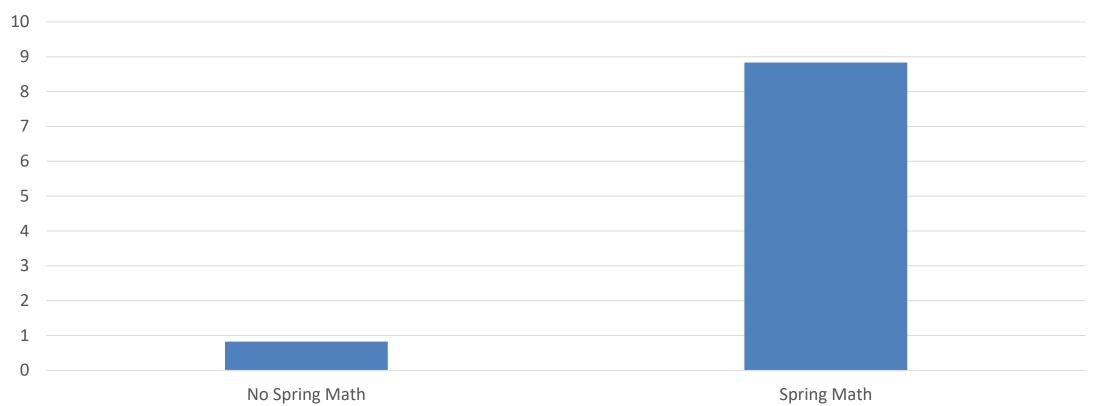
Teacher: Are Students Growing?

This class/group is not in the active school year. The form is disabled and kept for reference only.

#### Hide Students scores



Spring Screening


Final Classwide Intervention

### Teacher: Does Growth Transfer?



# If You Move the Baby Indicators, You will Move the Big Indicators. It's really not rocket science.

Mean Change in ROI Across Grades on Year-End Accountability Measure





## Most Typical Intervention "Fixes"

- $\checkmark$  Watch the intervention session.
- $\checkmark$  Pay attention to dosage.
- ✓ Tighten up rewards.
- $\checkmark$  Make sure error correction occurs with high quality everyday.
- ✓ If students are making errors, use pre-teach protocol in support.
- ✓ Integrate review of prerequisite skills and current skills into games and practice opportunities during the school day.
- ✓ Know that some skills take TIME!



Amanda VanDerHeyden Fairhope, Alabama @amandavande1 www.springmath.com amandavande@gmail.com

### #DoWhatWorks