APPROVED FACILITY SCHOOLS CURRICULUM GUIDE

SUBJECT: Science
GRADE: 8

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Earth and Space: Earth’s Place in the Universe** | I can develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of:
 - Lunar phases.
 - Eclipses of the sun and moon.
 - Seasons. | Synthesis
Application | Apparent motion
Astronomy
Axis
Eclipse
Equator
Equinox
Lunar
Natural satellite
Phase
Revolution
Rotation
Season
Solar
Solar system
Solstice
Star |
| **Earth and Space: Earth’s Place in the Universe** | I can develop and use a model to describe the role of gravity in the motions within galaxies and the solar system. | Synthesis
Application | Asteroid
Force
Galaxy
Gravity
Mass
Natural satellite
Orbit
Planet
Revolution
Solar nebula
Solar system
Universe |

TIMELINE: Quarter 1
APPROVED FACILITY SCHOOLS CURRICULUM GUIDE

SUBJECT: Science
GRADE: 8

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Earth and Space: Earth’s Place in the Universe** | I can analyze and interpret data to determine similarities and differences of objects in the solar system by comparing physical properties:
- scale of objects
- sizes of an object’s layers (such as crust and atmosphere)
- surface features (such as volcanoes)
- orbital radius | Analysis | Asteroid
Atmosphere
Crust
Orbital radius
Planet
Properties
Scale
Solar system
Telescope |
| **Engineering Design** | I can define the norms of an investigation with sufficient precision to ensure a successful solution.
I can define the constraints of an investigation which include consideration of scientific principles and other relevant knowledge that are likely to limit possible solutions. | Comprehension
Analysis
Synthesis | Accuracy
Constraints
Criteria
Design
Limit
Potential
Precision
Principles
Relevant
Solution |
<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Expectation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESOURCES AND NOTES FOR QUARTER 1:
<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth and Space: Earth’s Systems</td>
<td>I can develop a model of the processes used throughout the rock cycle.</td>
<td>Synthesis</td>
<td>Asthenosphere</td>
</tr>
<tr>
<td>MS-ESS2-. Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process. I C M</td>
<td>I can develop a model to describe the flow of energy that drives the cycling of Earth’s rocks and minerals.</td>
<td>Synthesis</td>
<td>Cementation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Compaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Crystallization</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cycle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Deformation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Deposition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Erosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Igneous</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lava</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lithosphere</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Magma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Metamorphic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minerals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Model</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Process</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sedimentary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sedimentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Weathering</td>
</tr>
</tbody>
</table>
APPROVED FACILITY SCHOOLS CURRICULUM GUIDE

SUBJECT: Science
GRADE: 8

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Earth and Space: Earth’s Systems**
MS-ESS2-2. Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales. IC | I can construct an explanation based on evidence for how Earth’s processes have changed Earth’s surface:
- Gradual or catastrophic
- Small or large.
- Formation of Great Lakes. | Application
Synthesis | Catastrophic
Deposition
Earthquake
Evidence
Geographic feature
Geologic formation
Geoscience
Geoscience processes
Gradual
Interactions
Landslides
Mass wasting
Spatial scales
Uplift
Vary
Volcano
Weathering |
| **Earth and Space: Earth’s Place in the Universe**
MS-ESS1-4. Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history. IC M | I can analyze rock formations and the fossils they contain to establish relative age of major events in Earth’s history.
I can construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history. | Analysis
Synthesis | Eon
Era
Evidence
Evolution
Extinction
Fossils
Geologic column
Geologic time Scale
Geology
Period
Relative
Rock formations
Strata
Superposition
Trace fossils |
APPROVED FACILITY SCHOOLS CURRICULUM GUIDE

SUBJECT: Science
GRADE: 8

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Earth and Space: Earth’s Systems** | I can analyze and interpret data of past plate motions based on:
 - The distribution of rocks and fossils.
 - Continental shapes.
 - Seafloor structures.
| | | Analysis | Continental drift
 Continental Shelves
 Convection
 Convergent
 Distribution
 Divergent
 Fossils
 Fracture zones
 Lithosphere
 Plate tectonics
 Ridges
 Seafloor spreading
 Subduction zone
 Tectonic plates
 Trenches |

| **Engineering Design** | I can define the norms of an investigation with sufficient precision to ensure a successful solution.
 I can define the constraints of an investigation which include consideration of scientific principles and other relevant knowledge that are likely to limit possible solutions.
| | | Comprehension | Accuracy
 Constraints
 Criteria
 Design
 Limit
 Potential
 Precision
 Principles
 Relevant
 Solution |

| **Engineering Design** | I can evaluate design solutions to determine how well they meet the norms and limits of the problem.
| | | Evaluation | Constraints
 Criteria
 Design
 Evaluate
 Principles
 Solution
 Systematic |
RESOURCES AND NOTES FOR QUARTER 2:
APPROVED FACILITY SCHOOLS CURRICULUM GUIDE

SUBJECT: Science
GRADE: 8

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| Earth and Space: Earth and Human Activity | I can analyze and interpret data on natural hazards to predict future catastrophic events.
- volcanoes
- earthquakes
- tsunami
- mass wasting
I can explain the development of systems to monitor or lessen the effects of natural hazards. | Analysis
Evaluation | Catastrophic
Forecast
Geologic forces
Interior processes
Magnitude
Mass wasting
Monitor
Natural hazards
Phenomena
Precede
Predictions
Reservoir
Surface processes
Tsunami |
| Earth and Space: Earth and Human Activity | I can locate the distributions of Earth’s resources that are typically non-renewable.
- petroleum
- metal ores
- soil
I can relate geologic processes to the formation of Earth’s non-renewable resources.
- burial of organic marine sediments and subsequent geologic traps
- past volcanic and hydrothermal activity associated with subduction zones
- active weathering and/or deposition of rock
I can construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes. | Knowledge
Comprehension
Application
Synthesis | Deposition
Distribution
Energy
Evidence
Geologic traps
Geoscience
processes
Groundwater
Hydrothermal
Marine
Metal ores
Mineral
Non-renewable resources
Organic
Petroleum
Renewable resources
Sediments
Subduction zones
Weathering |

TIMELINE: Quarter 3
APPROVED FACILITY SCHOOLS CURRICULUM GUIDE

SUBJECT: Science
GRADE: 8

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Earth and Space: Earth’s Systems** | I can develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity. I C M | Synthesis | Atmosphere
Condensation
Crystallization
Cycle
Energy
Evaporation
Force
Gravity
Hydrologic cycle
Percolation
Precipitation
Runoff
State
Sublimation
System
Transpiration
Water vapor |
| **Earth and Space: Earth’s Systems** | I can construct an explanation based on evidence for how Earth’s processes have changed Earth’s surface features and underground formations. | Application | Catastrophic
Deposition
Earthquake
Evidence
Geographic feature
Geologic formation
Geoscience
Gradual
Interactions
Landslides
Mass wasting
Processes
Spatial scales
Uplift
Volcano
Weathering |
APPROVED FACILITY SCHOOLS CURRICULUM GUIDE

SUBJECT: Science
GRADE: 8

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Engineering Design**
MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
C | I can define the norms of an investigation with sufficient precision to ensure a successful solution.
I can define the constraints of an investigation which include consideration of scientific principles and other relevant knowledge that are likely to limit possible solutions. | Comprehension
Analysis | Accuracy
Criteria
Design
Potential
Precision
Principles
Relevant
Solution |
| **Engineering Design**
MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
C | I can evaluate design solutions to determine how well they meet the norms and limits of the problem. | Evaluation | Constraints
Criteria
Design
Evaluate
Norms
Principles
Solution
Systematic |
| **Engineering Design**
MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
I | I can analyze data from investigations to determine similarities and differences between those investigations.
I can create a new solution using the best characteristics of different solutions. | Analysis
Evaluation
Synthesis | Analyze
Characteristics
Compare
Constraints
Contrast
Criteria
Design
Evaluate
Identify
Incorporate
Modify
Perform
Results
Solution
System |
APPROVED FACILITY SCHOOLS CURRICULUM GUIDE

SUBJECT: Science
GRADE: 8

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Expectation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESOURCES AND NOTES FOR QUARTER 3 :
Strand/Concept: Earth and Space - Earth’s Systems

MS-ESS2-5. Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions. **ICM**

<table>
<thead>
<tr>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can identify the characteristics of an air mass.</td>
<td>Knowledge</td>
<td>Air masses, Anti-cyclone</td>
</tr>
<tr>
<td>I can explain how air masses flow from regions of high pressure to low pressure, causing weather.</td>
<td>Application</td>
<td>Atmosphere, Barometer</td>
</tr>
<tr>
<td>I can explain how sudden changes in weather can result when different air masses collide.</td>
<td>Synthesis</td>
<td>Condensation, Continental</td>
</tr>
<tr>
<td>I can describe how weather can be predicted.</td>
<td></td>
<td>Currents, Cyclone</td>
</tr>
<tr>
<td>I can compile data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions.</td>
<td>Analysis</td>
<td>Density, Forecast</td>
</tr>
</tbody>
</table>

TIMELINE: Quarter 4
APPROVED FACILITY SCHOOLS CURRICULUM GUIDE

SUBJECT: Science
GRADE: 8

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| Earth and Space: Earth’s Systems | MS-ESS2-6. Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. | I can describe how circulation patterns in the atmosphere and ocean vary by latitude, altitude, and geographic land distribution.
I can explain how prevailing winds are the result of atmospheric circulation caused by unequal heating of the Earth and the Coriolis effect.
I can explain how heat is transferred in the global ocean convection cycle.
I can develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. | Synthesis | Altitude
Atmospheric
Circulation
Climate
Convection
Coriolis effect
Density
Distribution
Latitude
Models
Ocean currents
Oceanic
Prevailing winds
Regional
Rotation
Salinity
System
Temperature
Variation
Weather |
Earth and Space: Earth and Human Activity

MS-ESS3-2. Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects. M

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| Earth and Space: Earth and Human Activity | I can analyze and interpret data on natural hazards to predict future catastrophic events.
 - hurricanes
 - tornadoes
 - floods
 I can explain the development of systems to monitor or lessen the effects of natural hazards. | Analysis
 Evaluation
 Application
 Analysis | Catastrophic
 Cause/effect
 Forecast
 Frequency
 Geologic forces
 Interior processes
 Magnitude
 Mass wasting
 Mitigate
 Monitor
 Natural hazards
 Phenomena
 Precede
 Predictions
 Reservoir
 Surface processes
 Tsunami |
APPROVED FACILITY SCHOOLS CURRICULUM GUIDE

SUBJECT: Science
GRADE: 8

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth and Space: Earth and Human Activity</td>
<td>I can explain the effects of human activities on Earth’s systems.</td>
<td>Analysis</td>
<td>Acid rain</td>
</tr>
<tr>
<td></td>
<td>I can design a method for monitoring and minimizing human impact on the environment.</td>
<td>Evaluation</td>
<td>Agriculture</td>
</tr>
<tr>
<td>MS-ESS3-3. Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.</td>
<td></td>
<td></td>
<td>Aquifers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Assess</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Biosphere</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Consumption</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contaminate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Evaluate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Extinction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Feasible</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Habitats</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Land usage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Levee</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimize</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Monitor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pollution</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Principle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reduce-reuse-recycle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Species</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wetlands</td>
</tr>
</tbody>
</table>
APPROVED FACILITY SCHOOLS CURRICULUM GUIDE

SUBJECT: Science
GRADE: 8

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth and Space: Earth and Human Activity</td>
<td>I can construct an argument supported by evidence for how increases in human population and per-capital consumption of natural resources impact Earth's systems.</td>
<td>Analysis</td>
<td>Composition, Consumption, Energy, Erosion, Exhaust, Freshwater, Global warming, Greenhouse effect, Impact, Industrial waste, Mineral, Natural resources, Non-renewable resources, Ozone, Per-capita, Preservation, Renewable resources, Toxic waste</td>
</tr>
</tbody>
</table>

MS-ESS3-4. Construct an argument supported by evidence for how increases in human population and per-capital consumption of natural resources impact Earth's systems.

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth and Space: Earth and Human Activity</td>
<td>I can critique evidence of the factors that have caused the rise in global temperatures over the past century.</td>
<td>Evaluation</td>
<td>Agricultural, Atmospheric, Carbon dioxide, Carbon fixation, Century, Combustion, Evidence, Factors, Fossil fuel, Global warming, Greenhouse gases, Methane, Natural process, Ozone, Regional, Solar radiation</td>
</tr>
</tbody>
</table>

MS-ESS3-5. Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

January, 2014
APPROVED FACILITY SCHOOLS CURRICULUM GUIDE

SUBJECT: Science

GRADE: 8

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Design</td>
<td>I can define the norms of an investigation with sufficient precision to ensure a successful solution. I can define the constraints of an investigation which include consideration of scientific principles and other relevant knowledge that are likely to limit possible solutions.</td>
<td>Application</td>
<td>Accuracy, Constraints, Criteria, Design, Limit, Potential, Precision, Principles, Relevant, Solution</td>
</tr>
<tr>
<td>Engineering Design</td>
<td>I can evaluate investigations to determine how well they meet the norms and limits of the problem.</td>
<td>Evaluation</td>
<td>Constraints, Criteria, Design, Evaluate, Principles, Solution, Systematic</td>
</tr>
<tr>
<td>Engineering Design</td>
<td>I can analyze data from investigations to determine similarities and differences between those investigations. I can create a new solution using the best characteristics of different solutions.</td>
<td>Analysis, Evaluation, Synthesis</td>
<td>Analyze, Characteristics, Compare, Constraints, Contrast, Criteria, Design, Evaluate, Identify, Incorporate, Modify, Results, Solution, System</td>
</tr>
</tbody>
</table>

January, 2014
APPROVED FACILITY SCHOOLS CURRICULUM GUIDE

SUBJECT: Science
GRADE: 8

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Design</td>
<td>I can develop a model to generate data for repetitive testing and modification so an optimal design of that model can be achieved.</td>
<td>Analysis</td>
<td>Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Synthesis</td>
<td>Generate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evaluation</td>
<td>Model</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Modification</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Optimal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Refine</td>
</tr>
</tbody>
</table>

Student Expectation:

MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. **I C M**
RESOURCES AND NOTES FOR QUARTER 4: