APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 6

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand:** The Number System
Concept: Apply and extend previous understandings of numbers to the system of rational numbers. | 6.NS.5 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. | I can demonstrate positive & negative numbers as having opposite values in real-world situations.
I can use positive and negative numbers to represent quantities in real-world contexts.
I can explain what “zero” means in real-world contexts. | Synthesis | Positive numbers
Negative numbers
Quantities
Opposite values
Represent
Real-world context
Temperature above/below zero
Elevation above/below sea level
Credits/debits
Integers |

TIMELINE: Quarter 1

Colorado SS:
i-Ready lesson: Rational Numbers and Absolute Value

| Strand: Expressions and Equations
Concept: Write and evaluate numerical expressions involving whole-number exponents. | 6.EE.1 Write and evaluate numerical expressions involving whole-number exponents. | I can evaluate numerical expressions involving whole-number exponents. | Comprehension | Calculation
Evaluate
Exponent
Numerical expressions
Sum
Variable |

Colorado SS:
i-Ready lesson: Numerical Expressions and Order of Operations
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 6

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| Strand: Expressions and Equations
Concept: Write and evaluate numerical expressions involving whole-number exponents | 6.EE.2 Write, read, and evaluate expressions in which letters stand for numbers.
a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as 5 − y.
b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression 2 (8 + 7) as a product of two factors, view (8 + 7) as both a single entity and a sum of two terms.
c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas V = s³ and SA = 6s² to find the volume and surface area of a cube with sides of length s = 1/2. | I can write a number sentence from a written number expression.
I can use math vocabulary to identify parts of a math sentence.
I can solve a numeric problem with parenthesis in more than one way.
I can solve problems that use variables, including formulas.
I can use the Order of Operations to solve real-world problems. | Comprehension
Application | Term
Product
Factor
Quotient
Coefficient
Single entity
Variables
Formulas
Conventional order
Order of Operations (PEMDAS) |

Colorado SS:
i-Ready lesson (2a, 2b and 2c): Algebraic Expressions
<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand:** The Number System
Concept: Compute fluently with multi-digit numbers and find common factors and multiples. | 6.NS.2
Fluently divide multi-digit numbers using the standard algorithm. I M | I can perform long division fluently. | Analysis | Algorithm
Fluently |

Colorado SS:
i-Ready lessons: Division of Whole Numbers; Four-Digit Dividends

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand:** The Number System
Concept: Compute fluently with multi-digit numbers and find common factors and multiples. | 6.NS.3
Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation. I M | I can add, subtract, multiply, and divide decimals fluently. | Comprehension | |

Colorado SS:
i-Ready lessons: Division of Whole Numbers and Decimals; Division of Decimals; Multiplication of Decimals; Adding and Subtracting Decimals in Word Problems; Adding and Subtracting Decimals; Multiplying Decimal Numbers; Multiplying Decimal Numbers to Solve Problems; Dividing Decimals
<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand:** The Number System
Concept: Compute fluently with multi-digit numbers and find common factors and multiples. | 6.NS.4
Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12. Use the distributive property to express a sum of two whole numbers 1–100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express 36 + 8 as 4 (9 + 2), I M | I can find the Greatest Common Factor (GCF) when comparing 2 whole numbers <= 100.
I can find the Least Common Multiple (LCM) of 2 whole numbers <= 12.
I can change an addition problem into a multiplication problem using the distributive property. | Analysis | Distributive Property
Factor
GCF
LCM
Multiple |

Colorado SS:
i-Ready Lessons: Finding the Greatest Common Factor; Prime Factors
<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand: The Number System</td>
<td>6.NS.1 Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for (2/3) ÷ (3/4) and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that (2/3) ÷ (3/4) = 8/9 because 3/4 of 8/9 is 2/3. (In general, (a/b) ÷ (c/d) = ad/bc.) How much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 3/4-cup servings are in 2/3 of a cup of yogurt? How wide is a rectangular strip of land with length 3/4 mi and area 1/2 square mi?</td>
<td>I can use pictures and equations to multiply fractions. I can use pictures and equations to divide fractions. I can solve fraction division problems using the reciprocal method.</td>
<td>Synthesis</td>
<td>Quotients Relationship Visual fraction model (pictures) Reciprocal method REVIEW: Numerator Denominators</td>
</tr>
</tbody>
</table>

Colorado SS:
- i-Ready lessons: Dividing Fractions; Division of Fractions
RESOURCES AND NOTES FOR QUARTER 1:

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>

6/16/15
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 6

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand:** Statistics and Probability
Concept: Develop understanding of statistical variability. | 6.SP.1 Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, “How old am I?” is not a statistical question, but “How old are the students in my school?” is a statistical question because one anticipates variability in students’ ages. | I can recognize a statistical question from a non-statistical question through the use of vocabulary. | Comprehension | Anticipate
Data
Statistical question
Variable |
| **Colorado SS:**
i-Ready lesson: Measure of Center and Spread |

| Strand: Statistics and Probability
Concept: Develop understanding of statistical variability. | 6.SP.2 Understand that a set of data collected to answer a statistical question has a distribution, which can be described by its center, spread, and overall shape. | I can use collected data to find the median from a range of data.
I can explain a set of data using center, spread, and overall shape | Application | Center
Data Set
Distribution
Median
Overall shape
Range
Spread |
| **Colorado SS:**
i-Ready lesson: Measure of Center and Spread |

TIMELINE: Quarter 2
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics **GRADE:** 6

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand: Statistics and Probability Concept: Develop understanding of statistical variability.</td>
<td>6.SP.3 Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.</td>
<td>I can recognize the difference between measures of center and measures of variation.</td>
<td>Application</td>
<td>Measures of center Measures of variation</td>
</tr>
<tr>
<td></td>
<td>I can explain the difference between a measure of center and a measure of variation when used to describe a data set.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorado SS: i-Ready lesson: Measure of Center and Spread</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strand: Expressions and Equations</td>
<td>6.EE.3 Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression 3 (2 + x) to produce the equivalent expression 6 + 3x; apply the distributive property to the expression 24x + 18y to produce the equivalent expression 6 (4x + 3y); apply properties of operations to y + y + y to produce the equivalent expression 3y.</td>
<td>I can make equivalent expressions using the distributive property.</td>
<td>Comprehension</td>
<td>Distributive Property Equivalent expression</td>
</tr>
<tr>
<td>Concept: Apply and extend previous understandings of arithmetic to algebraic expressions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorado SS: i-Ready lesson: Equivalent Expressions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6/16/15
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 6

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| Strand: Expressions and Equations
Concept: Apply and extend previous understandings of arithmetic to algebraic expressions. | 6.EE.4 Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y + y + y$ and $3y$ are equivalent because they name the same number regardless of which number y stands for. | I can use a T-chart to verify whether or not 2 expressions are equivalent. | Comprehension | Equivalent T-chart |

Colorado SS:
i-Ready lesson: Equivalent Expressions

| Strand: Ratios and Proportional Relationships
Concept: Understand ratio concepts and use ratio reasoning to solve problems. | 6.RP.1 Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, “The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak.” “For every vote candidate A received, candidate C received nearly three votes.” | I can write a ratio relationship sentence comparing 2 things. | Comprehension | Ratio relationship |

Colorado SS:
i-Ready Lessons: Concept Ratio; Ratio Concepts
<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand:** Ratios and Proportional Relationships | 6.RP.2
Understand the concept of a unit rate a/b associated with a ratio $a:b$ with $b \neq 0$, and use rate language in the context of a ratio relationship. For example, “This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $3/4$ cup of flour for each cup of sugar.” “We paid $75 for 15 hamburgers, which is a rate of $5 per hamburger.” | I can use rate language to compare unit rate to ratio. | Comprehension | Ratio Unit rate |
| **Concept:** Understand ratio concepts and use ratio reasoning to solve problems. | | | | |

Colorado SS:
i-Ready lesson: Concept of Rate
<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>

RESOURCES AND NOTES FOR QUARTER 2:
Strand/Concept: The Number System

Concept: Apply and extend previous understandings of numbers to the system of rational numbers.

StudentExpectation

- **6.NS.6**: Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.
 - a. Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line, recognize that the opposite of the opposite of a number is the number itself, e.g., \(-(-3) = 3\), and that 0 is its own opposite.
 - b. Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.
 - c. Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.

StudentFriendlyLearningObjective

- I can plot numbers on coordinate axes.
- I can plot numbers in coordinate graphs.
- I can identify the location of positive and negative numbers on a number line.
- I can indicate the location of positive and negative numbers on a number line.
- I can identify opposite numbers as having the same value with opposite signs.
- I can use ordered pairs to locate points in quadrants of a coordinate plane.
- I can identify reflections across a coordinate plane.
- I can position integers on both horizontal and vertical number line diagrams.
- I can position integers on a coordinate plane.

Level of Thinking

- I can plot numbers on coordinate axes.
- I can plot numbers in coordinate graphs.
- I can indicate the location of positive and negative numbers on a number line.
- I can identify opposite numbers as having the same value with opposite signs.
- I can use ordered pairs to locate points in quadrants of a coordinate plane.
- I can identify reflections across a coordinate plane.
- I can position integers on both horizontal and vertical number line diagrams.
- I can position integers on a coordinate plane.

AcademicVocabulary

- Coordinate axes
- Coordinate plane
- Horizontal number line
- Negative number Coordinate
- Number line Diagrams
- Ordered pair
- Origin
- Quadrants
- Reflections
- Vertical number line
- X-axis
- Y-axis

TIMELINE: Quarter 3

- Colorado SS:
 - i-Ready lesson (6a): Rational Numbers and Absolute Value
 - i-Ready lessons (6b): Plotting Ordered Pairs; Review Plotting Ordered Pairs; Coordinate Plane and Absolute Value
 - i-Ready lessons (6c): Plotting Ordered Pairs; Review Plotting Ordered Pairs; Coordinate Plane and Absolute Value; Rational Numbers and Absolute Value
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics GRADE: 6

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand:** The Number System
Concept: Apply and extend previous understandings of numbers to the system of rational numbers. | 6.NS.7 Understand ordering and absolute value of rational numbers.
- a. Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret −3 > −7 as a statement that −3 is located to the right of −7 on a number line oriented from left to right. **I M**
- b. Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write −3°C > −7°C to express the fact that −3°C is warmer than −7°C. **I M**
- c. Understand the absolute value of a rational number as its distance from 0 on the number line, interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of −30, write $|−30| = 30$ to describe the size of the debt in dollars. **I M**
- d. Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than 30 dollars represents a debt greater than 30 dollars. **I M** | I can order and find the absolute value of rational numbers on a number line.
- I can interpret statements of inequality based on physical location on a number line.
- I can justify inequality statements by number line placement value through real-world examples.
- I can relate the absolute value of a negative quantity to a real-world context
- I can recognize "less than 30 dollars" as meaning debt greater than 30.
| Synthesis | Absolute value
Debt
Inequality ($>$ & $<$) |

Colorado SS:
- i-Ready lesson (7a, 7b, 7c, 7d): Rational Numbers and Absolute Value
<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand**: Expressions and Equations
Concept: Reason about and solve one-variable equations and inequalities. | 6.EE.5
Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true. I M | I can decide if an equation or inequality is true or not true.
I can use substitution to determine whether an equation or inequality is true. | Analysis | Differentiate
Specific set
Substitution
Variable
Variables |

Colorado SS:
i-Ready lessons: Solving Inequalities; Solving Equations; Using Equations to Solve problems

| Strand: Expressions and Equations
Concept: Reason about and solve one-variable equations and inequalities. | 6.EE.6
Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. I M | I can differentiate between variables and numbers to write and solve real-world math problems. | Analysis | Variable |

Colorado SS:
i-Ready lesson: Algebraic Expressions
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 6

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand:** Expressions and Equations
Concept: Reason about and solve one-variable equations and inequalities. | 6.EE.7 Solve real-world and mathematical problems by writing and solving equations of the form \(x + p = q \) and \(px = q \) for cases in which \(p, q \) and \(x \) are all nonnegative rational numbers. | I can write and solve equations using multiple variables when the variables are all positive numbers. | Analysis | |
| **Colorado SS:**
i-Ready lessons: Using Equations to Solve Problems; Equations and Inequalities |

| Strand: Expressions and Equations
Concept: Reason about and solve one-variable equations and inequalities. | 6.EE.8 Write an inequality of the form \(x > c \) or \(x < c \) to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form \(x > c \) or \(x < c \) have infinitely many solutions; represent solutions of such inequalities on a number line diagrams. | I can write inequalities of the \(x > c \) or \(x < c \) to represent real-world situations.
I can represent inequalities on a number line diagram. | Analysis | Inequality
Infinitely many solutions |
| **Colorado SS:**
i-Ready lesson: Solving Inequalities |

6/16/15
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 6

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand:** Geometry
Concept: Solve real-world and mathematical problems involving area, surface area, and volume. | 6.G.1
Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems. | I can find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing or decomposing them into other shapes. | Application | Compose
Decompose
Polygons
Right triangle
Special quadrilaterals |

Colorado SS:
i-Ready lessons: Concepts of Area and Perimeter; Area of Parallelograms, Quadrilaterals, and Polygons
<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand: Geometry</td>
<td>6.G.2 Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V = lwh$ and $V = bh$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.</td>
<td>I can construct the volume of a right rectangular prism by using unit cubes of fractional lengths. I can apply the formulas $V = lwh$ and $V = bh$ to find volumes of right rectangular prisms with fractional edge lengths.</td>
<td>Application</td>
<td>Right rectangular prism</td>
</tr>
</tbody>
</table>

Colorado SS:
i-Ready lessons: Find Volume of Rectangular Prisms Using Formulas; Volume and Fractional Length
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 6

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>

RESOURCES AND NOTES FOR QUARTER 3:

6/16/15
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 6

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expressions and Equations</td>
<td>6.EE.9 Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation d = 65t to represent the relationship between distance and time.</td>
<td>I can compose a table to analyze the relationship between dependent and independent variables. I can transfer a table of values to a graph. I can solve a direct proportion such as y = 2x, using tables and graphs</td>
<td>Synthesis</td>
<td>Dependent variable Independent variable (d=rt)</td>
</tr>
</tbody>
</table>

Colorado SS:

i-Ready lessons: Applying a Function Rule to Complete a Table; Writing Function Rules; Relationships Between Variables in Equations

TIMELINE: Quarter 4
<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand**: Ratios and Proportional Relationships
Concept: Understand ratio concepts and use ratio reasoning to solve problems. | 6.RP.3
Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
a. Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios. IM
b. Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed? IM
c. Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means 30/100 times the quantity); solve problems involving finding the whole, given a part and the percent. IM
d. Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities. IM | I can use visuals to solve problems for ratio and rate.
I can make tables of equivalent ratios.
I can solve unit rate problems involving unit pricing and constant speed through proportions.
Ex.:
\[
\frac{4}{7} = \frac{n}{35}
\]
I can cross-multiply a proportion to solve for a variable.
I can find a percent of a quantity as a rate per 100.
\[(\text{Ex. 30\% of 100}) \text{ is to multiply the numbers with use of converted decimal.}\]
I can convert units of measurement through proportions.
\[(\text{Ex. } 1\text{yd} = 48\text{in.})\]
3 ft x in. | Application | Review
Ratio
Tape diagram
Double number line diagram
Proportions
Percent of quantity |

Colorado SS: Use common fractions and percents to calculate parts of whole numbers in problem situations including comparisons of savings rates at different financial institutions.
Express the comparison of two whole number quantities using differences, part-to-part ratios, and part-to-whole ratios in real contexts, including investing and saving.

i-Ready lessons (3a): Concept of Ratio; Ratio Concepts
i-Ready lesson (3b): Concept of Rate
i-Ready lessons (3c): Concept of Percent; Estimating and Calculating Percents; Problem Solving with Ratio and Percent; Percent Concepts
i-Ready lessons (3d): Converting Customary Units of Length to Compare; Converting Customary Units of Weight to Compare; Converting Metric Units of Length to Compare; Converting Customary Units of Capacity to Compare; Converting Metric Units of Capacity to Compare
SUBJECT: Mathematics

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand:** The Number Systems
Concept: Apply and extend previous understandings of numbers to the system of rational numbers. | 6.NS.8 Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
I M | I can graph points in all four quadrants of the coordinate plane.
I can find the difference between points by using absolute value of the negative coordinates. | Synthesis | Negative distance
Negative coordinates |

Colorado SS:
i-Ready lessons: Plotting Ordered Pairs; Review Plotting Ordered Pairs; Coordinate Plane and Absolute Value

| Strand: Geometry
Concept: Solve real-world and mathematical problems involving area, surface area, and volume. | 6.G.3 Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.
I M | I can draw polygons in the coordinate plane given coordinates for the vertices.
I can find the distance between vertices by subtracting points with the same first or second coordinate. | Application | Vertices
Polygons |

Colorado SS:
i-Ready lessons: Plotting Ordered Pairs; Review Plotting Ordered Pairs; Polygons in the Coordinate Plane

6/16/15
<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry</td>
<td>6.G.4 Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.</td>
<td>I can make 3D figures using foldables (nets) and find the surface area of these figures.</td>
<td>Academic</td>
<td>Three-dimensional figures Nets Surface area Foldables</td>
</tr>
<tr>
<td>Statistics and Probability</td>
<td>6.SP.4 Display numerical data in plots on a number line, including dot plots, histograms, and box plots.</td>
<td>I can display numerical data in plots on a number line, including dot plots, histograms, and box plots.</td>
<td>Application</td>
<td>Dot plot Histogram Box plot</td>
</tr>
</tbody>
</table>

Colorado SS:
- i-Ready lessons: Nets and Surface Area; Nets

- i-Ready lessons: Histograms; Box Plots; Dot Plots; Choosing Data Displays
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 6

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand: Statistics and Probability</td>
<td>6.SP.5 Summarize numerical data sets in relation to their context, such as by: a. Reporting the number of observations. b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement. c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered. d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.</td>
<td>I can collect data based on a number of observations. I can describe the collected data including how it was measured. I can use data to find the median or mean, and describe patterns and deviations. I can evaluate data and relate the trends to the way the data was gathered.</td>
<td>Evaluation</td>
<td>Numerical data sets Interquartile range Deviations Box & Whiskers Variability</td>
</tr>
</tbody>
</table>

Colorado SS:
i-Ready lesson (5c and 5d): Measure of Center and Spread
<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>

RESOURCES AND NOTES FOR QUARTER 4: