APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 5

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand:** Number and Operations in Base Ten
Concept: Understand the place value system. | 5.NBT.1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left. I M | I can recognize that a number on a place-value chart is 10x larger than a number on its right and 10x smaller than a number on its left. | Knowledge | Place value and its components |

COLORADO SS:
i-Ready Lessons: Place Value to 1,000,000 and More; Renaming Fractions as Decimals; Understand Place Value

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand:** Number and Operations in Base Ten
Concept: Understand the place value system. | 5.NBT.2 Explain patterns in the number of zeroes of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. I M | I can explain the pattern in the number of zeroes in my answer (product) when multiplying by a power of ten.
I can explain how to move the decimal point in a number when multiplying or dividing by a power of 10. I can solve problems using whole-number exponents to represent powers of ten. | Comprehension Application | Exponent Power of 10 Product |

COLORADO SS:
i-Ready Lessons: Multiplying by Powers of Ten and Multiples of Ten; Multiplication and Division of Decimals by Positive Powers of Ten

6/16/15
Subject: Mathematics

Grade: 5

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand:** Number and Operations in Base Ten
Concept: Understand the place value system. | 5.NBT.3
Read, write, and compare decimals to thousandths.
a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., \(347.392 = 3 \times 100 + 4 \times 10 + 7 \times 1 + 3 \times (1/10) + 9 \times (1/100) + 2 \times (1/1000)\).
b. Compare two decimals to thousandths based on meanings of the digits in each place, using \(>, =\), and \(<\) symbols to record the results of comparisons. | I can read, write, and compare decimals to the thousandths.
I can read and write decimals to the thousandths in word, standard, and expanded form.
I can compare 2 decimals to the thousandths place using \(>, =\), or \(<\) symbols. | Knowledge Comprehension | Base-ten
Compare
Expanded form
Standard form
Word form |

Colorado SS:
i-Ready Lessons: Read and Write Decimals; Understand Place Value
i-Ready Lessons (3a): Renaming Fractions as Decimals; Read and Write Decimals
i-Ready Lessons (3b): Compare and Order Decimal Numbers with Number Lines

| Strand: Number and Operations in Base Ten
Concept: Understand the place value system. | 5.NBT.4
Use place value understanding to round decimals to any place. | I can round decimals to any place using my understanding of place value. | | |
|----------------|---------------------|-------------------------------------|-------------------|--------------------|

Colorado SS:
i-Ready Lessons: Round Decimals; Adding and Subtracting Decimals; Multiplying Decimal Numbers; Multiplying Decimal Numbers to Solve Problems; Dividing Decimals; Adding and Subtracting Decimals with Money; Multiplication of Decimals

6/16/15
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 5

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| Strand: Number and Operations in Base Ten
Concept: Perform operations with multi-digit whole numbers and with decimals to hundredths. | 5.NBT.5
Fluently multiply multi-digit whole numbers using the standard algorithm. I M | I can fluently multiply multi-digit whole numbers. | Application | Factor
Multi-digit
Partial product
Product
Whole-number |

Colorado SS:

- i-Ready Lessons: Multiplying by Powers of Ten and Multiples of Ten; Using Partial Products to Multiply; Multiplying by Two-Digit Numbers

6/16/15
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 5

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number and Operations in Base Ten</td>
<td>5.NBT.6 Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.</td>
<td>I can divide numbers up to 4 digits by 2-digits using place value, operations, and multiplication and division. I can explain division by using rectangular arrays and/or models.</td>
<td>Knowledge Comprehension Analysis</td>
<td>Area model Dividend Divisor Operations Quotient Rectangular arrays</td>
</tr>
<tr>
<td>Concept: Perform operations with multi-digit whole numbers and with decimals to hundredths.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Colorado SS:
i-Ready Lessons: Division of Whole Numbers; Four-Digit Dividends; Divide Whole Numbers; Dividing Whole Numbers; Multiplication and Division of Decimals by Positive Powers of Ten

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number and Operations in Base Ten</td>
<td>5.NBT.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.</td>
<td>I can add, subtract, multiply, and divide decimals to the hundredths using models or drawings and strategies of place value and operations. I can explain my reasoning of how and why I am able to add, subtract, multiply, and divide decimals to the hundredths using a written method.</td>
<td>Application Synthesis</td>
<td>Operations Relationship Strategies</td>
</tr>
<tr>
<td>Concept: Perform operations with multi-digit whole numbers and with decimals to hundredths.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Colorado SS:
i-Ready Lessons: Multiplying Decimal Numbers; Adding and Subtracting Decimals; Dividing Decimals
Subject: Mathematics
Grade: 5

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand:** Operations and Algebraic Thinking
Concept: Write and Interpret numerical expressions. | 5.OA.1
Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. | I can use parentheses, brackets, or braces in numeral expressions and evaluate them | Application
Evaluation | Brackets
Evaluate
Numerical expression
Order of operations
Parentheses |
| **Colorado SS:** i-Ready Lessons: Numerical Expressions and Order of Operations; Algebraic Expressions |

6/16/15

| Strand: Operations and Algebraic Thinking
Concept: Write and Interpret numerical expressions. | 5.OA.2
Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2" as 2 × (8 + 7). Recognize that 3 × (18932 + 921) is three times as large as 18932 + 921, without having to calculate the indicated sum or product. IM | | Knowledge
Comprehension
Application | Calculations
Decreased by
Increased by
Interpret Numerical expressions
Sum
Difference
Product |
| **Colorado SS:** i-Ready Lesson: Numerical Expressions and Order of Operations |
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 5

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>

RESOURCES AND NOTES FOR QUARTER 1:

6/16/15
<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry</td>
<td>Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate).</td>
<td>I can construct a coordinate system using a pair of perpendicular number lines (called axes) with an origin of zero and understand how to graph ordered pairs (coordinates) on the plane.</td>
<td>Comprehension Application</td>
<td>axes Coordinate Intersection Ordered pair Origin Perpendicular Plane system X-axis X-coordinate Y-axis Y-coordinate</td>
</tr>
</tbody>
</table>

Colorado SS:
i-Ready Lessons: Plotting Ordered Pairs; Review Plotting Ordered Pairs; Polygons in the Coordinate Plane
<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand: Geometry</td>
<td>5.G.2 Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.</td>
<td>I can interpret graph points in the first quadrant of the coordinate plane and relate it to the context of the situation.</td>
<td>Comprehension</td>
<td>Coordinate Quadrant Values</td>
</tr>
<tr>
<td>Concept: Graph points on the coordinate plane to solve real-world and mathematical problems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Colorado SS:
- i-Ready Lessons: Plotting Ordered Pairs; Review Plotting Ordered Pairs; Analyze Patterns and Relationships; Polygons in the Coordinate Plane
Strand/Concept | **Student Expectation** | **Student Friendly Learning Objective** | **Level of Thinking** | **Academic Vocabulary**
--- | --- | --- | --- | ---
Strand: Operations and Algebraic Thinking
Concept: Analyze patterns and relationships. | 5.OA.3 Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule “Add 3” and the starting number 0, and given the rule “Add 6” and the starting number 0, generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so. I M | Given 2 rules, I can create 2 number patterns and identify the relationship between them, then form ordered pairs and graph them on a coordinate plane. | Knowledge Synthesis | Coordinate plane
Corresponding
Ordered pair
Sequence

Colorado SS: Use patterns to solve problems including those involving saving and checking accounts.

Explain, extend, and use patterns and relationships in solving problems, including those involving saving and checking accounts such as understanding that spending more means saving less.

i-Ready Lessons: Plotting Ordered Pairs; Review Plotting Ordered Pairs; Analyze Patterns and Relationships; Applying a Function Rule to Complete a Table; Using a Function Table; Coordinate Plane and Absolute Value
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 5

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand:** Geometry
Concept: Classify two-dimensional figures into categories based on their properties. | 5.G.3 Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles. | I can identify the attributes of 2-dimensional figures. | Comprehension | 2-dimensional Attributes |
| **Colorado SS:**
i-Ready Lessons: Quadrilaterals; Classifying Triangles; Classify Two-Dimensional Figures |

| Strand: Geometry
Concept: Classify two-dimensional figures into categories based on their properties. | 5.G.4 Classify two-dimensional figures in a hierarchy based on properties. | I can classify 2-dimensional figures based on their properties. | Comprehension |
| **Colorado SS:**
i-Ready Lessons: Classifying Polygons; Quadrilaterals; Classifying Triangles; Classify Two-Dimensional Figures |
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 5

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand:** Number and Operations--Fractions
Concept: Use equivalent fractions as a strategy to add and subtract fractions. | 5.NF.1 Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, 2/3 + 5/4 = 8/12 + 15/12 = 23/12. (In general, a/b + c/d = (ad + bc)/bd.) IM | I can use equivalent fractions to add and subtract fractions with unlike denominators | Application | Denominator
Equivalent
Numerator |

Colorado SS:
- i-Ready Lessons: Understand Adding and Subtracting Fractions; Adding and Subtracting Unlike Fractions; Add and Subtract Fractions; Add and Subtract Fractions in Word Problems

6/16/15
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 5

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand:** Number and Operations--Fractions
Concept: Use equivalent fractions as a strategy to add and subtract fractions. | 5.NF.2 Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result 2/5 + 1/2 = 3/7, by observing that 3/7 < 1/2. I M | I can solve word problems involving addition and subtraction of fractions by using models or equations.
I can estimate mentally using benchmark fractions and decide if my answer is reasonable. | Application | Denominator
Equation
Numerator |

Colorado SS:
i-Ready Lessons: Adding and Subtracting Unlike Fractions; Finding the Least Common Denominator; Add and Subtract Fractions; Add and Subtract Fractions in Word Problems
RESOURCES AND NOTES FOR QUARTER 2:
<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand:</td>
<td>Number and Operations--Fractions</td>
<td>I can interpret a fraction as a division problem.</td>
<td>Application Evaluation</td>
<td>Denominator</td>
</tr>
<tr>
<td>Concept:</td>
<td>Apply and extend previous understandings of multiplication and division to multiply and divide fractions.</td>
<td>I can solve division word problems with answers as fractions or mixed numbers and use visual fraction models to represent the problem.</td>
<td></td>
<td>Fraction</td>
</tr>
<tr>
<td></td>
<td>5.NF.3 Interpreting fractions as division of the numerator by the denominator (a/b = a ÷ b). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret 3/4 as the result of dividing 3 by 4, noting that 3/4 multiplied by 4 equals 3, and that when 3 wholes are shared equally among 4 people each person has a share of size 3/4. If 9 people want to share a 50-pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?</td>
<td>I can determine the 2 whole numbers that a fraction or mixed number is between.</td>
<td></td>
<td>Fraction model</td>
</tr>
<tr>
<td></td>
<td>i-Ready Lessons: Renaming Fractions as Decimals; Fractions as Division</td>
<td></td>
<td></td>
<td>Number line</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Numerator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Whole number</td>
</tr>
</tbody>
</table>

TIMELINE: Quarter 3
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics | GRADE: 5

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand: Number and Operations--Fractions</td>
<td>Concept: Apply and extend previous understandings of multiplication and division to multiply and divide fractions. 5.NF.4 Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. a. Interpret the product (a/b) x q as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations a x q ÷ b. For example, use a visual fraction model to show (2/3) x 4 = 8/3, and create a story context for this equation. Do the same with (2/3) x (4/5) = 8/15. (In general, (a/b) x (c/d) = a/c x b/d. I M) b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas. I M</td>
<td>I can use multiplication concepts to multiply a fraction or whole number by a fraction. I can represent the multiplication of fractions by whole numbers using a visual model and create a story problem for the model. I can find the area of a rectangle by using tiles and by multiplying the side lengths, with fractional side lengths.</td>
<td>Comprehension Application</td>
<td>Area Equivalent Fraction Fractional side lengths Length Product Sequence of operations Story context Tiling Unit squares Visual model Whole number Width</td>
</tr>
</tbody>
</table>

Colorado SS:

- i-Ready Lessons (4a): Multiplying a Whole Number and a Fraction; Multiplying Fractions
- i-Ready Lessons (4b): Multiplying a Whole Number and a Fraction; Multiplication Fact Review; Understanding Area and Surface Area; Multiplying Fractions; Concepts of Area and Perimeter
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 5

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| Strand: Number and Operations--Fractions
Concept: Apply and extend previous understandings of multiplication and division to multiply and divide fractions. | 5.NF.5 Interpret multiplication as scaling (resizing), by:
a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.
b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a/b = (n \times a)/(n \times b)$ to the effect of multiplying a/b by 1. | I can interpret multiplication as scaling.
I can compare products by looking at the size of the factors.
I can explain why multiplying a number by a fraction greater than 1 has a product greater than the given number and relate it to the principle of fraction equivalence.
I can explain why multiplying a given number by a fraction less than 1 has a product smaller than the given number and relate it to the principle of fraction equivalence. | Comprehension Application | Comparing equivalence
Equivalent fractions
Factor
Principle of fraction
Product
Relating
Scaling
Whole numbers |

Colorado SS:
i-Ready Lessons (5a): Multiplying a Whole Number and a Fraction; Multiplying Fractions; Understand Multiplication as Scaling
i-Ready Lessons (5b): Multiplying a Whole Number and a Fraction; Multiplying Fractions; Understand Multiplication as Scaling
<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand: Number and Operations-- Fractions</td>
<td>5.NF.6 Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.</td>
<td>I can solve word problems involving multiplication of fractions and mixed numbers and use visual fraction models to represent the problems.</td>
<td>Application</td>
<td>Equations Fractions Mixed numbers Visual fraction models</td>
</tr>
<tr>
<td>Concept: Apply and extend previous understandings of multiplication and division to multiply and divide fractions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Colorado SS:
- i-Ready Lessons: Equivalent Fractions and Simplest Form; Multiplying a Whole Number and a Fraction; Multiplying Fractions; Understand Products of Fractions
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 5

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand:** Number and Operations—Fractions
Concept: Apply and extend previous understandings of multiplication and division to multiply and divide fractions. | 5.NF.7
Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.
1. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for (1/3) ÷ 4, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that (1/3) ÷ 4 = 1/12 because (1/12) × 4 = 1/3.
2. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for 4 ÷ (1/5), and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that 4 ÷ (1/5) = 20 because 20 × (1/5) = 4.
3. Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins? |
I can divide fractions by whole numbers and whole numbers by fractions using division concepts.
I can create a word problem using a visual fraction model to represent the division of a fraction by a whole number.
I can divide a fraction by a whole number.
I can divide a whole number by a fraction.
I can solve problems involving dividing fractions by whole numbers using related multiplication problems.
I can solve real-world problems involving the division of fractions using models and equations.
I can reason about the relationship between multiplication and division to develop division strategies for fractions.
Students able to multiply fractions in general can develop strategies to divide fractions in general, by reasoning about the relationship between multiplication and division. But division of a fraction by a fraction is not a requirement at this grade. | Comprehension
Application | Denominator
Division
Fraction
Fraction model
Fractions
Non-zero
Numerator
Quotient
Reasoning
Reciprocal
Relationship
Simplest form
Strategies
Unit fraction
Whole numbers |

Colorado SS:
i-Ready Lessons: Understand Division with Unit Fractions
i-Ready Lessons (7a): Understand Division with Unit Fractions; Dividing Fractions; Division of Fractions
i-Ready Lessons (7b): Understand Division with Unit Fractions; Dividing Fractions; Division of Fractions
i-Ready Lessons (7c): Divide Unit Fractions in Word Problems; Dividing Fractions; Division of Fractions
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 5

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>

RESOURCES AND NOTES FOR QUARTER 3:
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 5

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand: Measurement and Data</td>
<td>5.MD.1 Convert among different-sized standard measurement units within a given measurement system.</td>
<td>I can convert among different-sized standard measurement units. I can solve standard measurement unit conversions in multi-step real world problems.</td>
<td>Comprehension Application</td>
<td>Capacity, Celsius, Centimeter, Customary units, Fahrenheit, Feet, Inches, Kilometer, Length, Meter, Metric units, Millimeter, Precision, Weight, Yard</td>
</tr>
<tr>
<td>Concept: Convert like measurement units within a given measurement system.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Colorado SS:
- i-Ready Lessons: Converting Customary Units of Length; Converting Metric Units of Length; Converting Customary Units of Length to Compare; Converting Customary Units of Weight to Compare; Converting Metric Units of Length to Compare; Converting Customary Units of Capacity to Compare; Converting Metric Units of Capacity to Compare; Converting Units of Mass to Compare; Solve Word Problems Involving Measurement; Solve Word Problems Involving Conversions
APPROVED FACILITY SCHOOLS CURRICULUM DOCUMENT

SUBJECT: Mathematics
GRADE: 5

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand:** Measurement and Data
Concept: Represent and interpret data. | 5.MD.2
Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally. | I can make a line plot (number line) to display a data set using measurements in fractions of a unit (1/2, 1/4, 1/8). I can use line plots (number lines) to solve problems that involve fraction operations (+,-) | Application | Data set Line plot |

Colorado SS:
i-Ready Lessons: Interpreting Line Plots; Line Plots with Fractions
<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>
| **Strand:** Measurement and Data
Concept: Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. | 5.MD.3: Recognize volume as an attribute of solid figures and understand concepts of volume measurement.
a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume.
b. A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units. | I can recognize volume as an attribute of solid figures. | Knowledge
Comprehension
Application | Cubic cm
Cubic ft
Cubic in
Edge lengths
Improvised units
Unit cube
Volume |
| **Colorado SS:**
i-Ready Lessons (3a): Understanding Volume; Understand and Measure Volume; Review Volume
i-Ready Lessons (3b): Understanding Volume; Understand and Measure Volume; Review Volume |

| Strand: Measurement and Data
Concept: Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. | 5.MD.4: Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units. | I can measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units. | Application |
| **Colorado SS:**
i-Ready Lessons: Understanding Volume; Understand and Measure Volume; Review Volume |
<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand: Measurement and Data</td>
<td>5.MD.5. Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.</td>
<td>I can relate volume to operations of multiplication and addition.</td>
<td>Application</td>
<td>Associative property</td>
</tr>
<tr>
<td>Concept: Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.</td>
<td>a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.</td>
<td>I can solve real world problems involving volume.</td>
<td></td>
<td>Irregular solid figure</td>
</tr>
<tr>
<td></td>
<td>b. Apply the formulas V = l x w x h and V = B x h for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems.</td>
<td>I can demonstrate that packing a right rectangular prism with unit cubes is the same as multiplying the edge lengths.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real world problems.</td>
<td>I can represent threefold whole-number products as volume and apply the associative property of multiplication while finding volume.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I can apply the formula V = l x w x h and V = B x h to find volumes of right rectangular prisms with whole number edge lengths when solving real world and mathematical problems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I can solve real world problems that find volume of irregular solid figures by adding the unit cubes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorado SS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i-Ready Lesson: Understand and Measure Volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i-Ready Lessons (5a): Understanding Volume; Understand and Measure Volume; Find Volume of Rectangular Prisms Using Formulas; Review Volume; Volume with Fractional Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i-Ready Lessons (5b): Understanding Volume; Find Volume of Rectangular Prisms Using Formulas; Review Volume; Volume with Fractional Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i-Ready Lessons (5c): Understanding Volume; Find Volume of Rectangular Prisms Using Formulas; Review Volume; Volume with Fractional Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mathematics

<table>
<thead>
<tr>
<th>Strand/Concept</th>
<th>Student Expectation</th>
<th>Student Friendly Learning Objective</th>
<th>Level of Thinking</th>
<th>Academic Vocabulary</th>
</tr>
</thead>
</table>

RESOURCES AND NOTES FOR QUARTER 4: