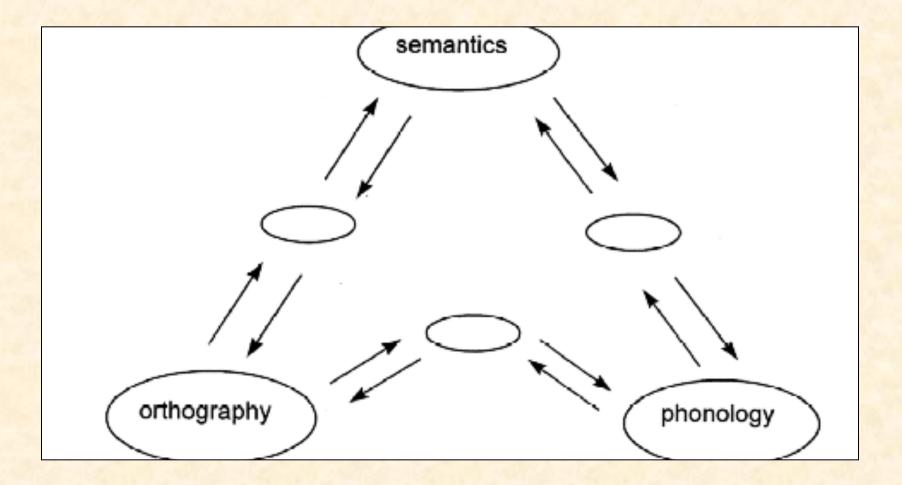
Neuroimaging studies of language development reading and reading disabilities

Kenneth R. Pugh, PhD

President and Director of Research, Haskins Laboratories

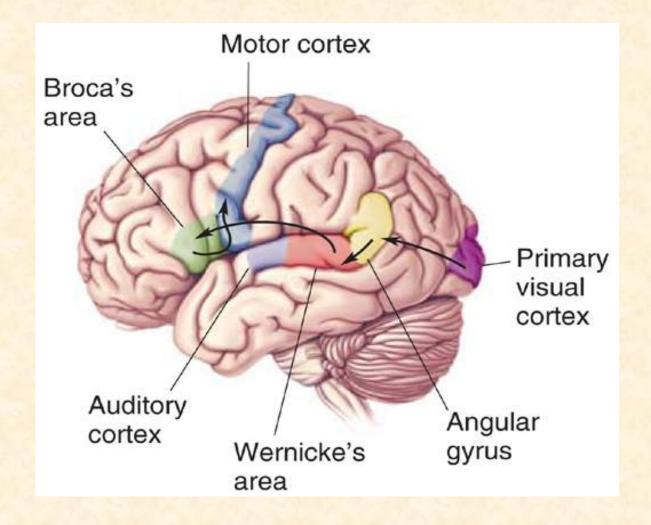
Professor, University of Connecticut

Associate Professor, Yale University


The importance of Reading

- The development of fluent reading skill is essential for success in the modern world.
- Significant numbers of children in all countries fail to acquire adequate literacy skills.
- For many this is due largely to lack of good learning opportunities
 - But for some will reflect difficulties that are brainbased (Specific Reading Disability).

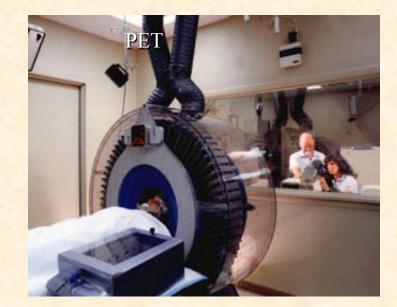
First Principles: Speech, Reading, and the Brain


- Speech is a **biological specialization** but written language is largely a cultural invention.
- Speech is mastered naturally in almost all people, without direct instruction.
- But reading is difficult and reading failure occurs in large numbers of children across all written languages.
- Explicit instruction is essential.
- No brain specialization for reading.

The cognitive challenge of learning to read

What is the brain basis reading development?

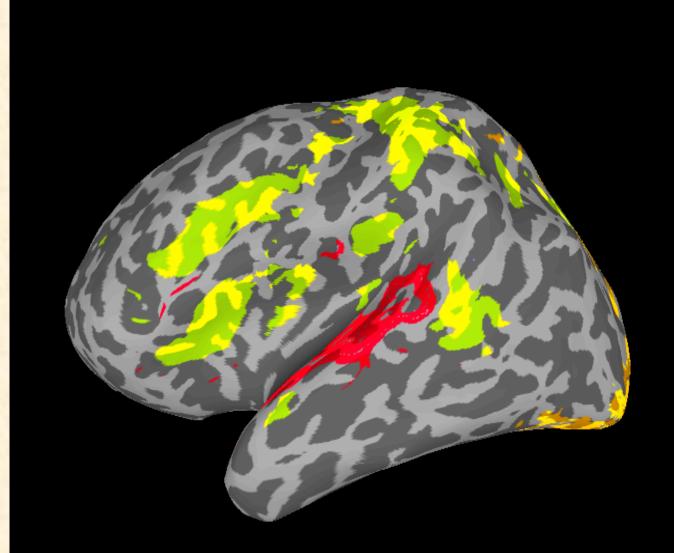
Fast and automatic word reading depends on finding most efficient brain pathways to support mapping from "vision to language"



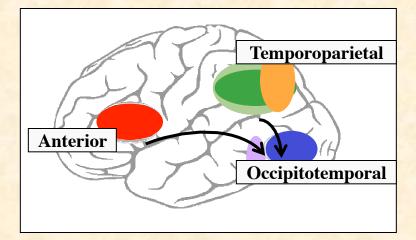
In-vivo brain research: Mapping spoken and written language with neuroimaging

- Functional brain imaging:
- two major classes of techniques:
- electrophysiological (EEG; MEG)
 - hemodynamic (fMRI, PET).
- The former give information on timing of brain activity while the latter provide information on localization.
 - Structural brain imaging:
 - MRI yields detailed measures of both grey matter volume and white matter tracts

Acquisition techniques



Word recognition: Print vs. speech (Frost, Pugh, et al., 2013)

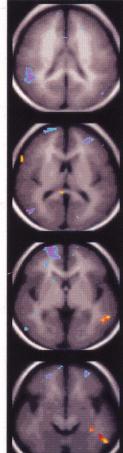

A model of the reading circuitry

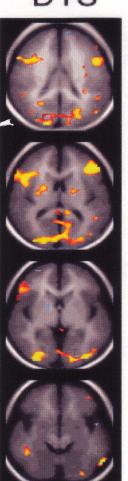
TEMPOROPARIETAL (Pugh et al. (DORSAL) 2000;2010) Areas: supramarginal, angular, superior temporal (Wernicke's) gyri **Hypothesized Function**: Mapping of orthographic to phonological and semantic Barth representations **ANTERIOR OCCIPITOTEMPORAL** Areas: inferior frontal gyrus (VENTRAL) (including Broca's area) Areas: **Hypothesized Function**: occipitotemporal juncture, Articulatory recoding middle and inferior temporal gyri

Hypothesized Function:

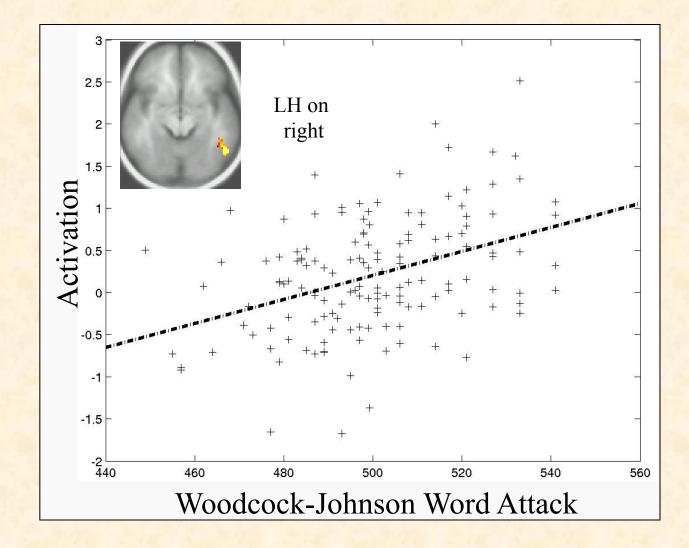
Linguistically structured memorybased word identification system (posterior aspect = "word-form" area)

Developing a "VWFA"


 Increases in reading skill are associated with increased specialization of ventral LH areas for print.


VWFA AND Reading Development (Shaywitz, Shaywitz, Pugh et al., 2002)

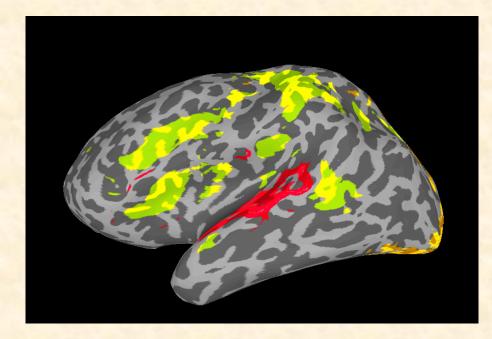
Age Correlations: NWR



VWFA AND Reading Development (Shaywitz, Shaywitz, Pugh et al., 2002)

The learning circuitry (Pugh et al, 2013)

Thalamus/ Pulvinar


Executive Function and

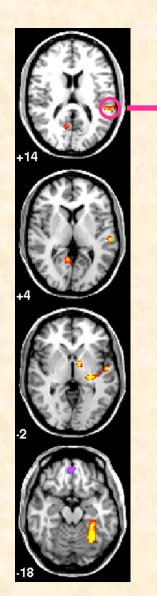
attentional

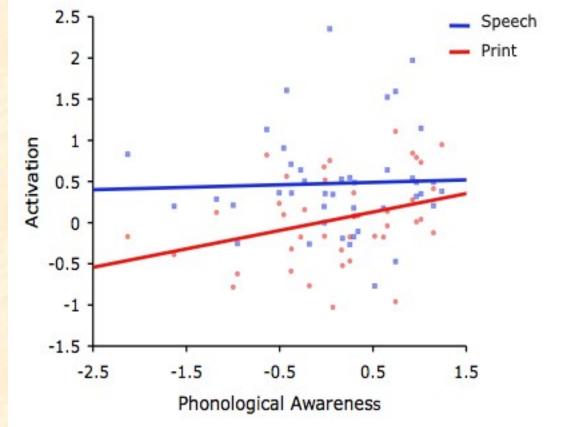
Temporoparietal/ frontal language


Ventral visual pathway

Speech/print integration is crucial in building an efficient reading circuitry

Links between phonological skills and speech/print integration in beginning readers (Frost...Pugh, 2009)


PA x Modality



LH on right side

p < .01

PA x Modality

I = 0.44

Speech/print integration: follow-up data on reading outcomes two years later at age 9

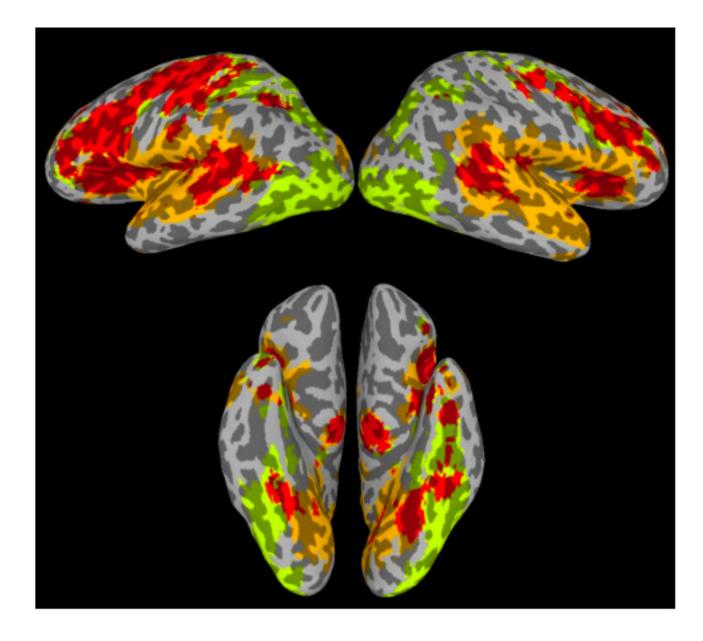
Psychological Science OnlineFirst, published on November 20, 2015 as doi:10.1177/0956797615611921

Research Article

Print-Speech Convergence Predicts Future Reading Outcomes in Early Readers

Jonathan L. Preston^{1,2}, Peter J. Molfese^{2,3}, Stephen J. Frost², W. Einar Mencl², Robert K. Fulbright⁴, Fumiko Hoeft^{2,5}, Nicole Landi^{2,3}, Donald Shankweiler^{2,3}, and Kenneth R. Pugh^{2,3}

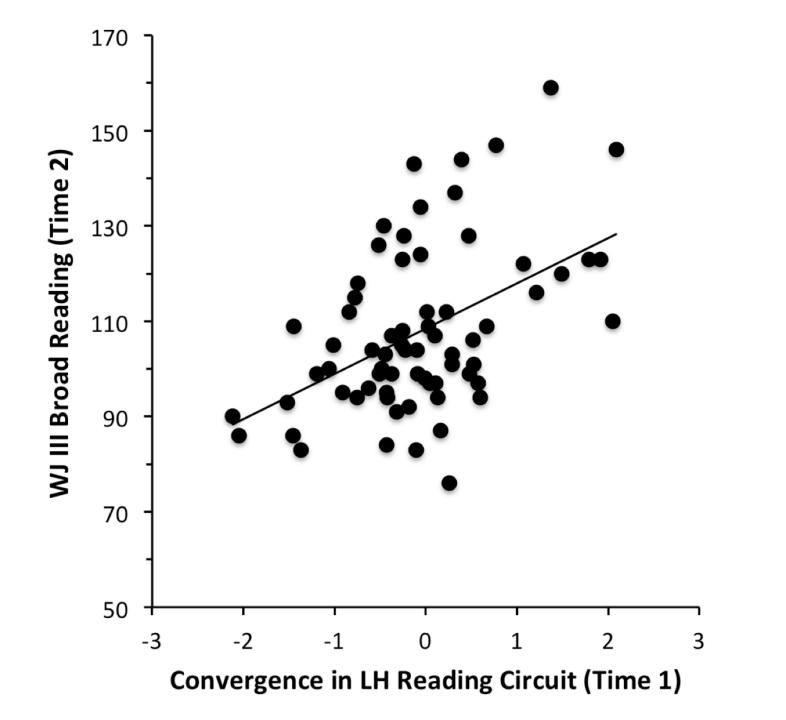
¹Department of Communication Sciences & Disorders, Syracuse University; ²Haskins Laboratories, Yale University; ³Department of Psychology, University of Connecticut; ⁴Diagnostic Radiology, Yale University School of Medicine; and ⁵Department of Psychiatry, University of California, San Francisco


Abstract

Becoming a skilled reader requires building a functional neurocircuitry for printed-language processing that integrates with spoken-language-processing networks. In this longitudinal study, functional MRI (fMRI) was used to examine convergent activation for printed and spoken language (print-speech coactivation) in selected regions implicated in printed-language processing (the reading network). We found that print-speech coactivation across the left-hemisphere reading network in beginning readers predicted reading achievement 2 years later beyond the effects of brain activity for either modality alone; moreover, coactivation effects accounted for variance in later reading after controlling for initial reading performance. Within the reading network, effects of coactivation were significant in bilateral inferior frontal gyrus (IFG) and left inferior parietal cortex and fusiform gyrus. The contribution of left and right IFG differed, with more coactivation in here the predicting better achievement but more coactivation in right IFG predicting better achievement but more coactivation in right IFG predicting better achievement but more coactivation in right IFG predicting better achievement but more coactivation in right IFG predicting better achievement but more coactivation in right IFG predicting better achievement but more coactivation in right IFG predicting better achievement but more coactivation in right IFG predicting better achievement but more coactivation in right IFG predicting better achievement but more coactivation in right IFG predicting better achievement but more coactivation in right IFG predicting better achievement but more coactivation in right IFG predicting better achievement but more coactivation in right IFG predicting better achievement but more coactivation in right IFG predicting better achievement but more coactivation in right IFG predicting better achievement but more coactivation in right IFG predicting better achievement but more coactivation in right IFG predicting better achiev

CORPORE ASSOCIATION FOR PSYCHOLOGICAL SCIENCE

Psychological Science 1–10 © The Author(s) 2015 Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/0956797615611921 pss.sagepub.com



CO-ACTIVATION FOR SELECT AND ENTITE TREDICTS READING

Function	ß	t	р
Control	16	-1.41	.163
Control	60	-1.65	.103
Control	12	-1.77	.083
ROI	1.59	4.32	<.001
ROI	28	-1.00	.323
	Control Control Control ROI	Control16Control60Control12ROI1.59	Control 16 -1.41 Control 60 -1.65 Control 12 -1.77 ROI 1.59 4.32

Outcome: Time 2 Woodcock Johnson Broad Reading Model R² = .30

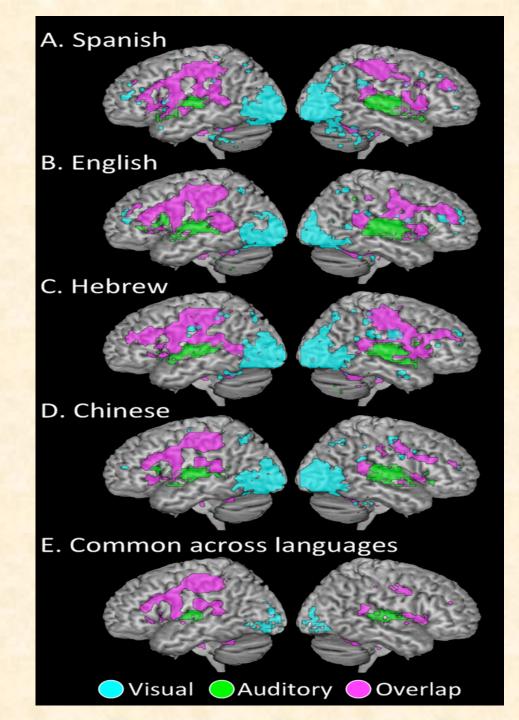
Summary: Cross modal integration and reading skill

- Our recent studies in indicate that a critical factor discriminating skilled from less skilled readers is the degree of print/speech integration in relevant LH circuits.
- Educational implication: All of these findings reinforce the importance of focus on phonological processing in emergent readers.

• Q) Is this the same in other written languages including non-alphabetic languages?

Universal brain signature of proficient reading: Evidence from four contrasting languages

Jay G. Rueckl^{a,b}, Pedro M. Paz-Alonso^c, Peter J. Molfese^{a,b}, Wen-Jui Kuo^d, Atira Bick^e, Stephen J. Frost^{a,1}, Roeland Hancock^f, Denise H. Wu^g, William Einar Mencl^a, Jon Andoni Duñabeitia^c, Jun-Ren Lee^h, Myriam Oliver^c, Jason D. Zevin^{a,i,j}, Fumiko Hoeft^{a,f}, Manuel Carreiras^{c,k}, Ovid J. L. Tzeng^{l,m,n}, Kenneth R. Pugh^{a,b,o}, and Ram Frost^{a,c,e}


^aHaskins Laboratories, New Haven, CT 06511; ^bDepartment of Psychological Sciences, University of Connecticut, Storrs, CT 06269; ^cBasque Center on Cognition, Brain and Language, 2009 Donostia-San Sebastian, Spain; ^dInstitute of Neuroscience, National Yang-Ming University, 11221 Taipei, Taiwan; ^eDepartment of Psychology, The Hebrew University, 91905 Jerusalem, Israel; ^fDepartment of Psychiatry, University of California, San Francisco, CA 94143; ^gInstitute of Cognitive Neuroscience, National Central University, 32001 Taoyuan, Taiwan; ^hDepartment of Educational Psychology and Counseling, National Taiwan Normal University, 10610 Taipei, Taiwan; ⁱDepartment of Psychology, University of Southern California, Los Angeles, CA 90089; ^jDepartment of Linguistics, University of Southern California, Los Angeles, CA 90089; ^kIKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain; ^lBrain Science Research Center, National Chiao Tung University, 300 Hsinchu, Taiwan; ^mInstitute of Linguistics, Yale University, New Haven, CT 06511

Edited by Michael I. Posner, University of Oregon, Eugene, OR, and approved November 2, 2015 (received for review May 12, 2015)

We propose and test a theoretical perspective in which a universal hallmark of successful literacy acquisition is the convergence of the speech and orthographic processing systems onto a common network of neural structures, regardless of how spoken words are represented orthographically in a writing system. During functional MRI, skilled adult readers of four distinct and highly contrasting languages, Spanish, English, Hebrew, and Chinese, performed an identical semantic categorization task to spoken and written

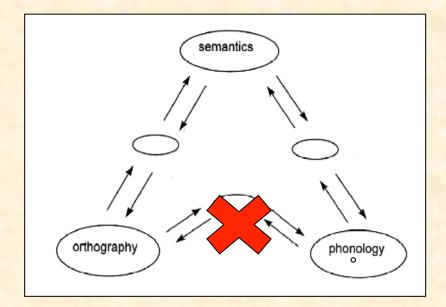
PNAS

reading would not only recruit the neural circuits best suited for processing its orthographic symbols (which could show some frontend variation due to visuospatial differences) but would fundamentally depend on access to existing neurocircuits implicated in processing meaningful spoken words (16). By this view, a universal hallmark of successful literacy acquisition would be the emergence of a reading network that is strongly constrained by the brain network underlying the processing of spoken words (a network itself

Reading Disability "Consensus" Definition

 Dyslexia primarily affects the skills involved in accurate and fluent word reading and spelling.

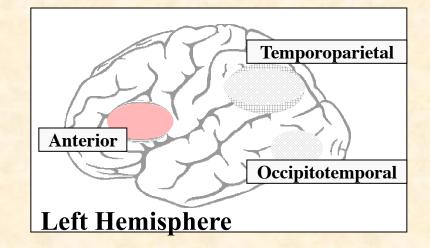
Characteristic features of dyslexia are difficulties in phonological awareness, verbal memory and verbal processing speed.


Dyslexia occurs across the range of intellectual abilities.

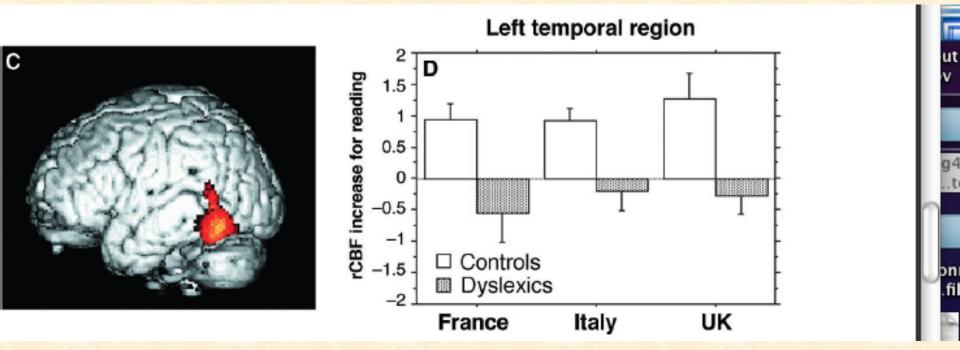
It is best thought of as a continuum, not a distinct category, and there are no clear cut-off points.

- Co-occurring difficulties may be seen in aspects of language, motor co-ordination, mental calculation, concentration and personal organisation, but these are not, by themselves, markers of dyslexia.
- A good indication of the severity and persistence of dyslexic difficulties can be gained by examining how the individual responds or has responded to well founded intervention.

Reading Disability: Behavioral phenotype


- Word identification is slow, labored, and error prone in RD (bottleneck for comprehension).
- Early deficits in developing finegrained phonemic awareness predict word reading difficulties later on.
- These deficits in phonological awareness impede the development of efficient phonological assembly routines (grapheme to phoneme mapping) which, in turn, places severe limits on word (and pseudoword) reading fluency.

Brain circuits and Reading Disability


 Frequent finding: A large number of studies indicate that RD readers show anomalous patterns in LH temporoparietal and LH ventral (occipitotemporal) regions during reading and language tasks; this has been seen in several languages to date (Paulesu et al., 2001;Wu et al. 2010).

 RH and frontal "compensatory" shift in RD often reported

Dyslexia: Cultural Diversity and Biological Unity

E. Paulesu,^{1,2}* J.-F. Démonet,³ F. Fazio,^{2,4} E. McCrory,⁵ V. Chanoine,³ N. Brunswick,⁶ S. F. Cappa,⁷ G. Cossu,⁸ M. Habib,⁹ C. D. Frith,⁶ U. Frith⁵

TD/RD differences: Insights from functional / structural neuroimaging to date

 Functional/structural neuroimaging indicate reading disabled (RD) children, adolescents, and adults fail to organize left hemisphere (LH) temporoparietal (TP) and occipitotemporal (OT) cortical regions into a coherent reading circuit (Pugh et al., 2000, 2010):

1) Unstable and reduced activation

2) Reduced functional connectivity (Pugh et al., 2000)

3) problems in learning, and consolidation of new learning (Pugh et al., 2008, *JOCN*)

- 4) Reduced grey matter volume
- 5) white matter tract anomalies

 * Identification of biomarkers provides clear neural targets for intervention.

 Big question: Does treatment result in normalization vs. compensation at the neural level?

But

* Not-single-subject diagnostic...

. . .

 And we do not know if these markers are "causes or consequences of RD".

Next steps in neurobiological research..

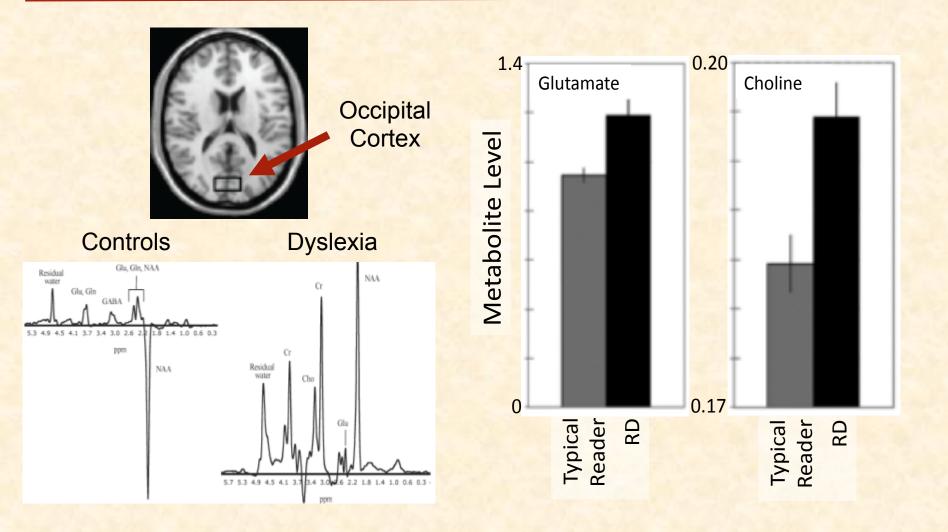
 It is critical that we move beyond mere identification of structural and functional biomarkers and toward brainbased causal models focused on how and why these structural and functional differences impede the development of LH ventral specialization for print.

Tools: Animal models; Neurochemistry; dynamic learning and plasticity experiments

Haskins/Yale longitudinal studies

- We have recently completed a large scale NIHfunded longitudinal study asking:
- What are gene-brain-cognitive preconditions necessary for successful reading acquisition?
- We tracked low and high risk children over 2 years years (ages 7-9) at multiple levels of analysis (genetics, neuroanatomy, neurochemistry, neurofunction, cognition).

Neurochemistry and RD: A initial look at MRS and behavioral relationships


Behavioral/Cognitive

Glutamate and Choline Levels Predict Individual Differences in Reading Ability in Emergent Readers

Kenneth R. Pugh,^{1,2,3} Stephen J. Frost,¹ Douglas L. Rothman,² Fumtko Hoeft,^{1,4} Stephante N. Del Tufo,^{1,3} Graeme F. Mason,² Peter J. Molfese,¹ W. Etnar Mencl,¹ Elena L. Grigorenko,^{1,3} Nicole Landi,^{1,3,3} Jonathan L. Preston,^{1,6} Leslie Jacobsen,¹ Mark S. Seidenberg,^{1,7} and Robert K. Fulbright^{1,2} 'Haskins Laboratorics, New Haves, Connecticut 06511, 'Department of Diagnostic Radiology, Yale University School of Medicine, New Haves, Connecticut 0620 8042 ID performance of Department of Diagnostic Radiology, Yale University School of Medicine, New Haves, Connecticut

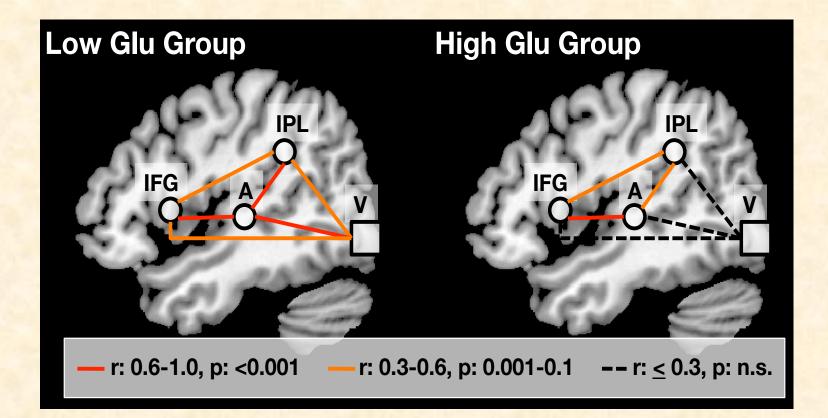
06520-8042, "Department of Psychology, University of Connecticut, Storm, Connecticut 06269-1020, "Department of Psychiatry, University of California San Francisco, San Francisco, California 94143-0884, "Yale University Child Study Center, New Haven, Connecticut 06520, "Department of Communication Disorders, Southern Connecticut State University, New Haven, Connecticut 06515, and "Department of Psychology, University of Wisconsin Madison, Madison, Wisconsin 53706-1611

Reading disability: glutamate & choline links (Pugh et al., J Neuroscience 2014)

Longitudinal outcome data (Glutamate)

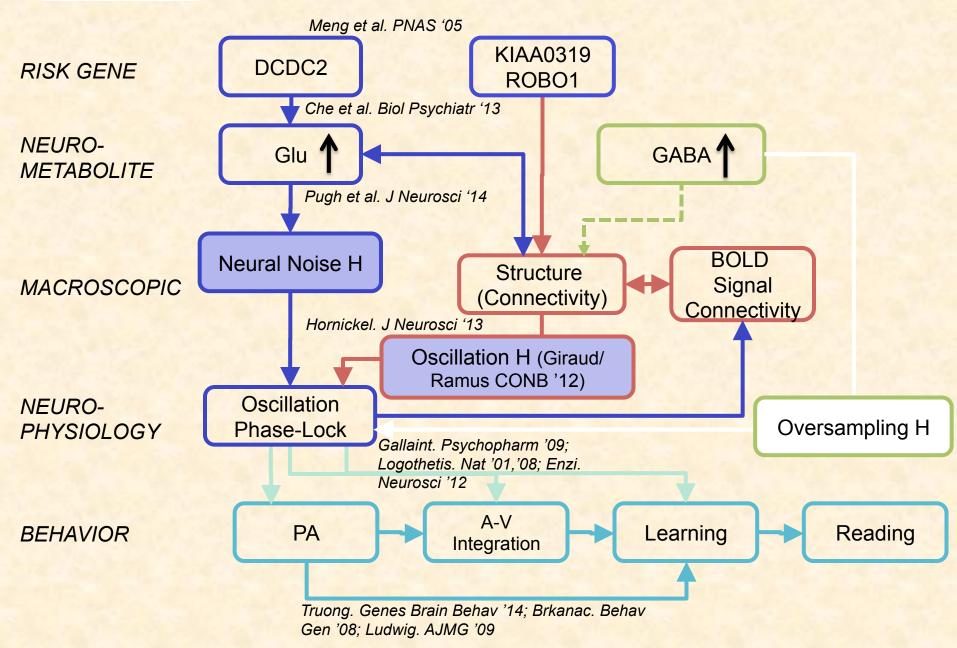
The inverse relationship between glutamate and reading scores is stable at multiple time points

Thus elevated glutamate levels at age 7 predict poor reading two years later.

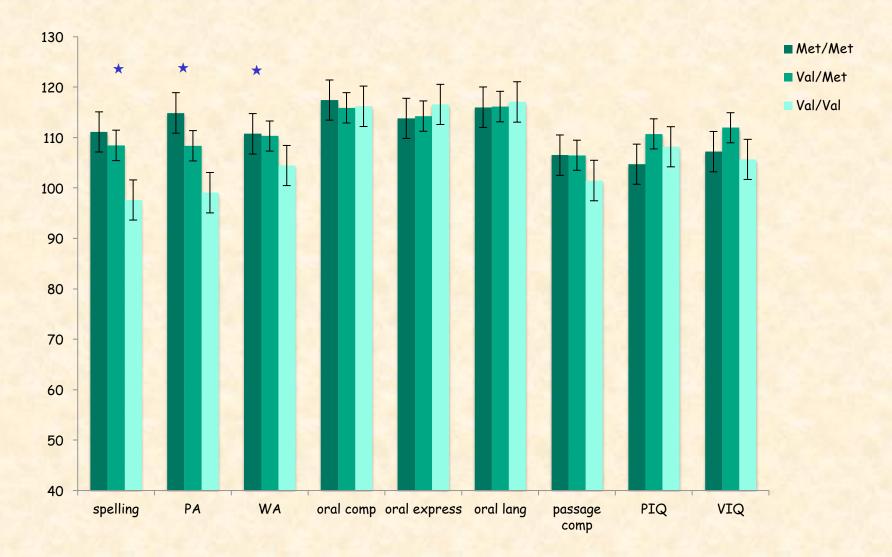

Elevated glutamate, neural noise, and RD

We are the first to study to examine Glu and GABA in RD children:

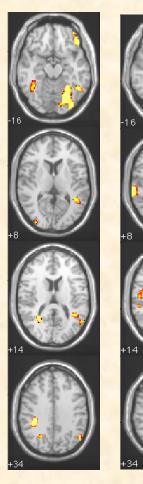
But elevated Glutamate has been **seen** in neurodevelopmental populations (e.g., autism and ADHD) and has been associated with hyperexcitability and "noisy" processing accounts for these populations.


Is a "neural noise" account of RD a viable theory? These accounts have been gaining popularity recently but we need a <u>mechanistic account</u>.

MRS vs. fMRI connectivity on 58 subjects



R01HD086168 (Multi-PIs: Pugh/Hoeft)


Genetics: Relations between COMT genotype, behavioral phenotype and fMRI activation (Landi et al., 2013 Dev. Science)

COMT Val/Met: Behavioral data

Landi et al. 2013 47

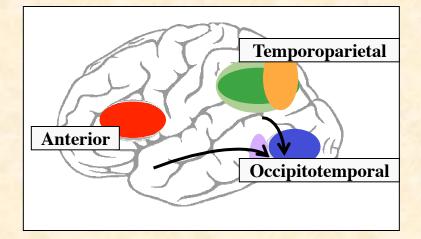
COMT Val/Met: fMRI findings

Met carriers look like better readers.

Developmental Science Developmental Science 16:1 (2013), pp 13-23

PAPER

The COMT Val/Met polymorphism is associated with readingrelated skills and consistent patterns of functional neural activation


Nicole Landi, Stephen J. Frost, W. Einar Mencl, Jonathan L. Preston, Leslie K. Jacobsen, Maria Lee, Carolyn Yrigollen, Kenneth R. Pugh and Elena L. Grigorenko

Met/Met > Val/ Val

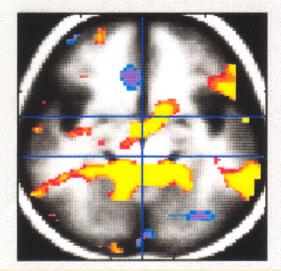
Met/Met > Val/Met

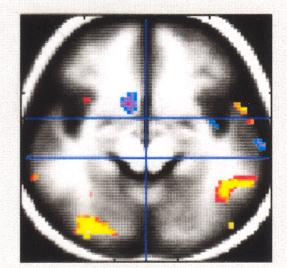
Val/Met > Val/Val

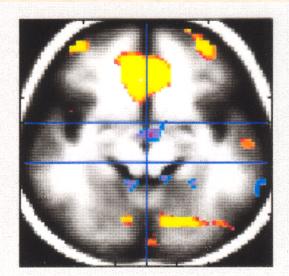
A brief look at remediation and plasticity in RD

- RD readers do not tend to show the typical neurodevelopmental trend.
- Question: Does remediation normalize this trajectory?

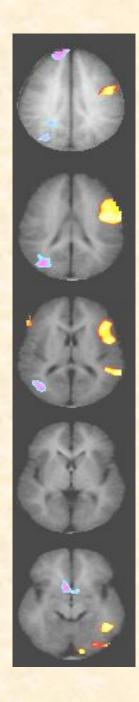
Remediation of RD (Shaywitz, Shaywitz, Pugh et al., 2004, Biological Psychiatry)


 Q) Are under-engaged LH systems fundamentally disrupted, or does observed de-activation reflect an unstable but potentially "trainable" state?


- First grade cohorts: TD, RD-treat, RD-control
- fMRI: pre, post and (for RD-treat) at one year follow up


Treatment Protocol (from B. Blachman)

- 50 min tutoring, 5 days per week, 9 months (105) hours total)
- 5 step plan (unscripted) & individualized
 - Letter-sound associations
 Phoneme manipulation
 Reading words
 Reading text
 Assessment

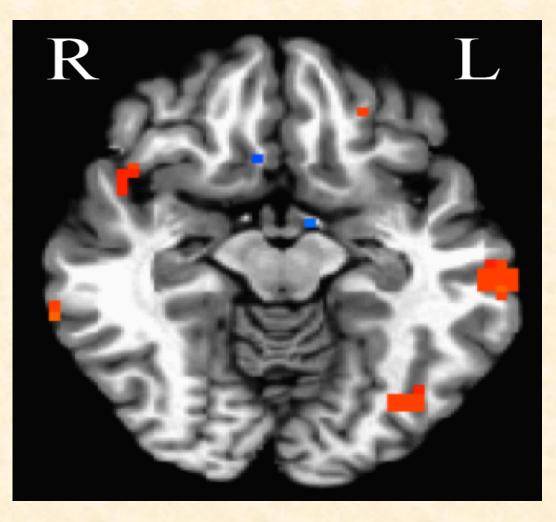

Treatment Year 2 Vs RD Control Year 2 Treatment Year 2 Vs Treatment Year 1 RD Control Year 2 Vs RD Control Year 1

Year 3 (followup) vs.Year 1 (Pre-Treatment)

LH on right

A consistent story on treatment effects is emerging

- A growing number of treatment studies have shown modulation of LH reading circuits with effective treatment:
- functional changes (Shaywitz et al., 2004; Simos et al.,2002 Temple et al.,2003; Eden et al., 2004; Meyler et al, 2009)


and

- Grey and white matter changes (Keller et al., 2009; Flowers et al., 2011)
- BUT: we must better understand why some children do not respond to treatment...

Treatment Resistor/Responder Project (2013-2018)

- A new NIH-funded P01 project involves a collaboration between Haskins Labs, Georgia State University, and Hospital for Sick Children.
- We employ:
- An evidence based phonological treatment (90 hours)
- pre and post fMRI,
- cognitive experiments,
- computational modeling
- To:
- discriminate treatment resistors from treatment responders

Brain regions showing strong predictive relationship to treatment responsiveness

A challenge to current theories: visuospatial "strengths" in RD might represent a neural tradeoff

- A good deal of anecdotal support for the claim that RD individuals might have better skills at visuospatial processing than controls.
- But: Limited controlled studies to date.
- One particularly compelling research study suggesting a possible tradeoff found that children with RD appear to have advantages in configural, or "global" processing (seeing the whole) over featurebased, or "local" processing (von Károlyi et al., 2003; von Károlyi, 2001).

NeuroImage xxx (2014) xxx-xxx

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/ynimg

Neural correlates of a language and non-language visuospatial processing in adolescents with reading disability

Joshua J. Diehl^{a,b,*}, Stephen J. Frost^b, Gordon Sherman^c, W. Einar Mencl^b, Anish Kurian^{b,d}, Peter Molfese^b, Nicole Landi^b, Jonathan Preston^b, Anja Soldan^e, Robert K. Fulbright^{b,f}, Jay G. Rueckl^{b,d}, Mark S. Seidenberg^{b,g}, Fumiko Hoeft^{b,h}, Kenneth R. Pugh^{b,d}

* Department of Psychology, 118 Haggar Hall, University of Notre Dame, Notre Dame, IN 46556, USA

^b Haskins Laboratories, 300 George St., Suite 900, New Haven, CT 06511, USA

^c Newgrange School, 407 Nassau St., Princeton, NJ 08540, USA

⁴ Department of Psychology, 406 Balbidge Road, Unit 1020, University of Connecticut, Storrs, CT 06269-1020, USA

* Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA

¹ Department of Radidogy, Yale University School of Medicine, MRRC, The Anlyan Center N137, P.O. Box 208043, New Haven, CT 06520-8043, USA

⁸ Department of Psychology, Bragden Hall, 1202W. Johnsons St., University of Wisconsin, Madison, WI 53706-1969, USA.

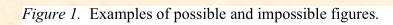
^b Department of Psychiatry, University of California, Langley Porter Psychiatry Institute (LPPI), Langley Porter Psychiatric Hospital and Clinics (LPPHC),

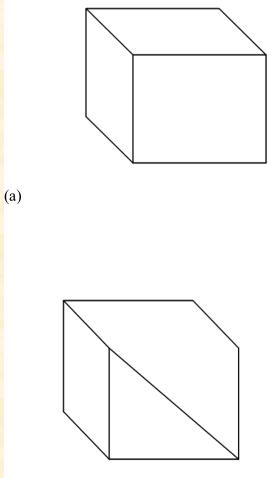
401 Pamassus Avenue, San Francisco, CA 94143, USA

ARTICLE INFO

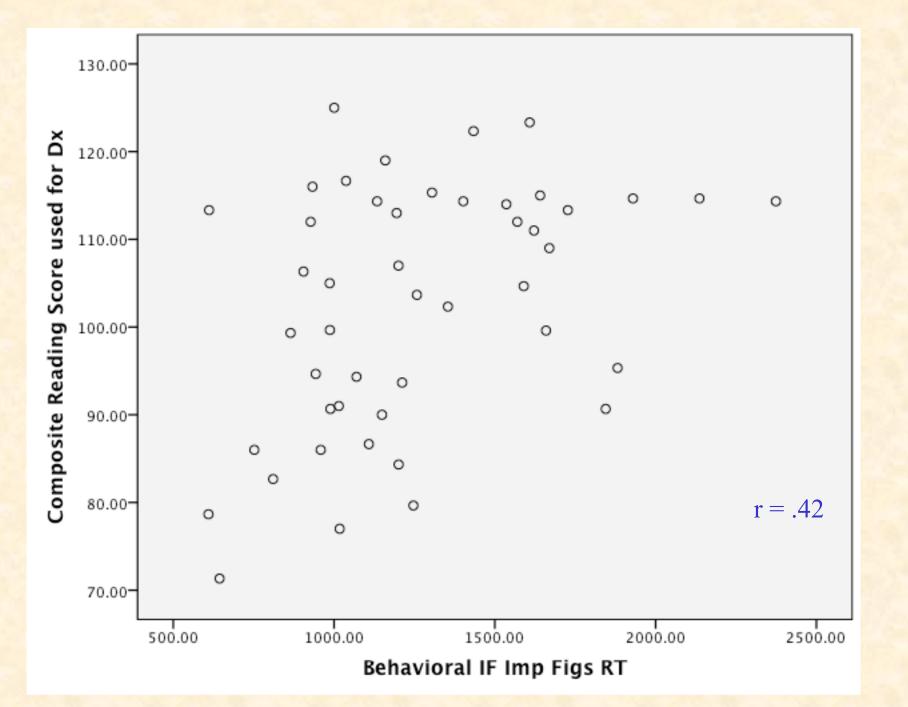
Article history: Accepted 18 July 2014 Available online xxxx

Keywords: Reading Dyslexia fMRI Visuos patial processing Impossible figures


ABSTRACT


Despite an ectoral evidence of relative visuospatial processing strengths in individuals with reading disability 25 (RD), only a few studies have assessed the presence or the extent of these putative strengths. The current 26 study examined the cognitive and neural bases of visuospatial processing abilities in adole scents with RD relative 27 to typically developing (TD) peers. Using both cognitive tasks and functional magnetic resonance imaging (fMRI) 28 we contrasted printed word recognition with non-language visuospatial processing tasks. Behaviorally, lower 29 reading skill was related to a visuospatial processing advantage (shorter latencies and equivalent accuracy) on 30 a geometric figure processing task, similar to findings shown in two published studies. FMRI analyses revealed 31 key group by task interactions in patterns of cortical and subcortical activation, particularly in frontostriatal 32 networks, and in the distributions of right and left hemisphere activation on the two tasks. The results are 33 discussed in terms of a possible neural tradeoff in visuospatial processing in RD. 34

© 2014 Published by Elsevier Inc.


fMRI: reading tasks vs. configural tasks

- In this study with both cognitive tests and functional Magnetic Resonance Imaging (fMRI) scans we examined:
- 1) word/nonword reading (a print lexical decision task)
- 2) a non-linguistic visuospatial processing task (the Possible-Impossible Figure Task) that had previously shown processing advantages for individuals with RD (von Károlyi et al., 2001; 2003).
- 3) A control one-back tasks with both print and figures.

(b)

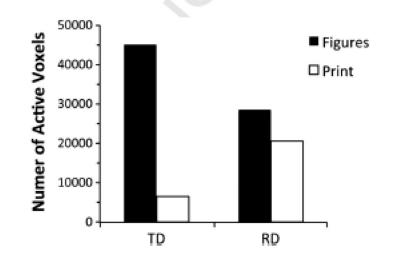


Fig. 3. Reader group differences during the one-back task in voxels significantly activated (p < .001, FDR corrected) for figures and print across the entire cortex.

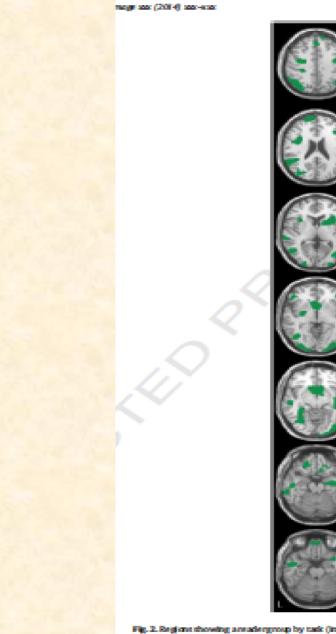


Fig. 2. Regions showing a readergroup by task (imposed bie figures, lexical decision) effect (p < 0.1, corrected for FOR). Images from top to bottom car respond to the following position along the x-axis in MNI space: +40 + 22; +4 - 4, -10, -20, and -24, respectively, with the Di on the right olds of the images.

and the second second

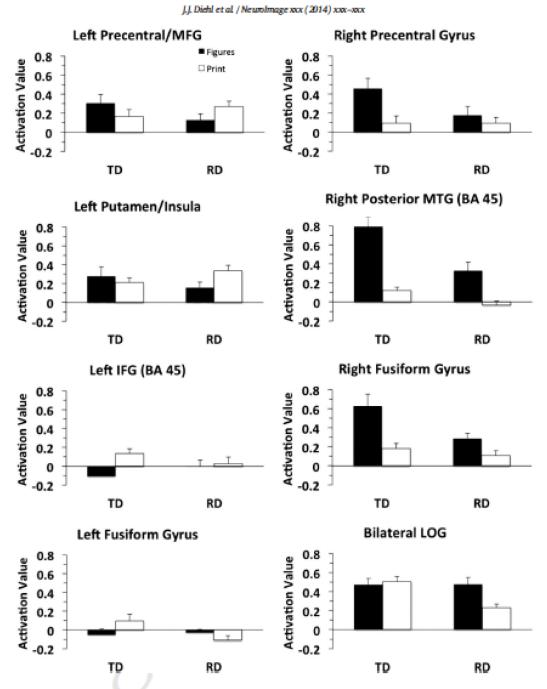


Fig. 4. Functionally defined regions of interest from the reader group by task (impossible figures, lexical decision) pattern interaction.

Implications

These results indicate that figures are processed with greater expertise in RD while a print advantage is obtained in typically developing peers.

This study provides the first neurobiological evidence for a possible hemsipheric tradeoff between reading and visuo-spatial processing in RD.

Next question: Is this hemispheric tradeoff a consequence of reading experience or a predisposition in RD children?

Collaborators

At Haskins Laboratories/Yale/UCONN and partner universities:

Einar Mencl, Rebecca Sandak, Stephen Frost, Nicole Landi, Jon Preston, Peter Molfese, Leonard Katz, Jay Rueckl, Ram Frost, Jim Magnuson, Donald Shankweiler, Elena Grigorenko, Mark Seidenberg, Fumiko Hoeft, Laurie Cutting, Jun Ren Lee, David Braze, Kaja Jasinska, Jeff Malins, Daragh Sibley, Allison Austin, Anish Kurian, Stephanie Del Tufo, Lesley Jacobson, Todd Constable, Robert Fulbright, Doug Rothman, Jason Zevin, Ludo Verhoeven, Heikki Lyytinen, Hua Shu, Robin Morris, Joy Hirsch, Maureen Lovett, Roeland Hancock, Ovid Tzeng, Nissan Kuo, Denise Wu, Manuel Carrerias, Kepa Paz-Alonzo