Curriculum Development Course at a Glance Planning for High School Mathematics

Content Area	Mathematics Grade Level High School			
Course Name/Course Code Integrated Math 3				
Standard	Grade Level Expectations (GLE)			GLE Code
1. Number Sense, Properties,	1. The complex number system includes real numbers and image	inary numbers		MA10-GR.HS-S.1-GLE.1
and Operations	2. Quantitative reasoning is used to make sense of quantities ar	d their relationships in pro	blem situations	MA10-GR.HS-S.1-GLE.2
2. Patterns, Functions, and Algebraic Structures	 Functions model situations where one quantity determines a graphically, and using tables 	nother and can be represed	nted algebraically,	MA10-GR.HS-S.2-GLE.1
	2. Quantitative relationships in the real world can be modeled a	nd solved using functions		MA10-GR.HS-S.2-GLE.2
	3. Expressions can be represented in multiple, equivalent forms			MA10-GR.HS-S.2-GLE.3
	4. Solutions to equations, inequalities and systems of equations are found using a variety of tools			MA10-GR.HS-S.2-GLE.4
3. Data Analysis, Statistics, and	1. Visual displays and summary statistics condense the information in data sets into usable knowledge			MA10-GR.HS-S.3-GLE.1
Probability	 Statistical methods take variability into account supporting in quantitative studies designed to answer specific questions 	 Statistical methods take variability into account supporting informed decisions making through quantitative studies designed to answer specific questions 		MA10-GR.HS-S.3-GLE.2
	3. Probability models outcomes for situations in which there is i	MA10-GR.HS-S.3-GLE.3		
 Shape, Dimension, and Geometric Relationships 	1. Objects in the plane can be transformed, and those transformations can be described and analyzed mathematically		MA10-GR.HS-S.4-GLE.1	
	2. Concepts of similarity are foundational to geometry and its applications			MA10-GR.HS-S.4-GLE.2
	 Objects in the plane can be described and analyzed algebraically Attributes of two- and three-dimensional objects are measurable and can be quantified 		MA10-GR.HS-S.4-GLE.3	
			MA10-GR.HS-S.4-GLE.4	
	5. Objects in the real world can be modeled using geometric concepts			MA10-GR.HS-S.4-GLE.5

Curriculum Development Course at a Glance Planning for High School Mathematics

Ser Direction Levention	o 21 st Century Skills Critical Thinking and Reasoning: Thinking Deeply, Thinking Differently Information Literacy: Untangling the Web Collaboration: Working Together, Learning Together Self-Direction: Own Your Learning Invention: Creating Solutions	 Make sense of problems and persevere in solving them. Reason abstractly and quantitatively. Construct viable arguments and critique the reasoning of others. Model with mathematics. Use appropriate tools strategically. Attend to precision. Look for and make use of structure. Look for and express regularity in repeated reasoning. 		n solving them. the reasoning of others. ed reasoning.
Unit Titles			Length of Unit/Contact Hours	Unit Number/Sequence
Survey Says			3 weeks	1
Within and Around			6 weeks	2
Let Poly be Rational			6 weeks	3
Sine of the Times			5 weeks	4
Function App			6 weeks	5

Unit Title	Survey Says		Length of Unit	3 weeks
Focusing Lens(es)	Justification Inferences	Standards and Grade Level Expectations Addressed in this Unit	MA10-GR.HS-S.3-GLE.1 MA10-GR.HS-S.3-GLE.2	
Inquiry Questions (Engaging- Debatable):	When should sampling be used? When is sampling better than a census? (MA10-GR.HS-S.3-GLE.2-IQ.3)			
Unit Strands	Statistics and Probability: Making Inferences and Justifying Conclusions Statistics and Probability: Interpreting Categorical and Quantitative Data			
Concepts	inferences, parameters, random sample, population, validity, sampling, surveys, experiments, observational studies, statistical results, randomization, simulation, indirect, data			

Generalizations My students will Understand that	Guiding (Factual	Questions Conceptual
Random samples from a population allow statisticians to make inferences about population parameters. (MA10- GR.HS-S.3-GLE.2.a)	How can we reduce the margin of error in a population prediction? How can I use mean and standard deviation of a data set to draw a normal distribution? What happens to sample-to-sample variability when you increase the sample size? (MA10-GR.HS-S.3-GLE.2- IQ.2)	 Why is the normal distribution commonly used to model a population and when is this not appropriate? How can the results of a statistical investigation be used to support an argument? (MA10-GR.HS-S.3-GLE.2- IQ1) Why is the margin of error in a study important? (MA10- GR.HS-S.3-GLE.2-IQ.5) How is it known that the results of a study not simply due to chance? (MA10-GR.HS-S.3-GLE.2-IQ.6)
Validity in sampling, surveys, experiments, observational studies and the interpretation of statistical results depends on randomization. (MA10-GR.HS-S.3-GLE.2-EO.b)	In what ways can a survey be biased? How does randomization factor into the design of an experiment?	Why is randomization an important component of sampling?
Simulation provides a means to indirectly collect data. (MA10-GR.HS-S.3-GLE.2-EO.b)	How do you design a simulation to model the collection of data that isn't easily obtainable?	How has the use of technology enhanced our ability to study difficult to measure phenomena?

Key Knowledge and Sl My students will	Kills: What students will know and be able to do are so closely linked in the concept-based discipline of mathematics. Therefore, in the mathematics samples what students should know and do are combined.			
 Understand statistics as a process for making inferences about population parameters based on a random sample from that population. (MA10-GR.HS-S.3-GLE.2-EO.a.i) Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. (MA10-GR.HS-S.3-GLE.2-EO.a.ii) Recognize the purposes of and differences among sample surveys, experiments, and observational studies and explain how randomization relates to each. (MA10-GR.HS-S.3-GLE.2-EO.b.i) Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling. (MA10-GR.HS-S.3-GLE.2-EO.b.ii, iii) Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant. (MA10-GR.HS-S.3-GLE.2-EO.b.iv) Evaluate reports based on data. (MA10-GR.HS-S.3-GLE.2-EO.b.vi) Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages and recognize that there are data sets for which such a procedure is not appropriate; use calculators, spreadsheets, and tables to estimate areas under the normal curve. (MA10-GR.HS-S.3-GLE.1-EO.a.iv, v) 				
Critical Language: includes EXAMPLE: A stude hypocrisy of slave	Critical Language: includes the Academic and Technical vocabulary, semantics, and discourse which are particular to and necessary for accessing a given discipline. EXAMPLE: A student in Language Arts can demonstrate the ability to apply and comprehend critical language through the following statement: "Mark Twain exposes the hypocrisy of slavery through the use of satire."			
A student in ability to apply and compr through the following stat	can demonstrate the statistics is a process for making inferences about population parameters based on a random sample of a population. Statistics is a process for making inferences about population parameters based on a random sample of a population.			
Academic Vocabulary:	inferences, surveys, experiments, observational studies, data, conclusions, interpret, evaluate, recognize, compare, model, explain, spreadsheets, estimate			
Technical Vocabulary:	statistic, statistics, sampling, mean, standard deviation, data sets, normal distribution, normal curve, margin of error, parameters, random sample, population, validity, sampling, statistical results, randomization, simulation, indirect, data			

Unit Title	Within and Around			Length of Unit	6 weeks
Focusing Lens(es)	Perspective Interdependence	Standards and Grade Level Expectations Addressed in this Unit	MA10-GR.HS MA10-GR.HS MA10-GR.HS	-S.4-GLE.1 -S.4-GLE.2 -S.4-GLE.3	
Inquiry Questions (Engaging- Debatable):	 Do perfect circles naturally occur in the physical world? If so, how do we model them? (MA10-GR.HS-S.4-GLE.2-IQ.4) Why are circles at the foundation of geometric constructions? 				
Unit Strands	Geometry: Circles Geometry: Expressing Geometric Properties with Equations Geometry: Congruence				
Concepts	arc length, inscribed angles, circumscribed angles, central angles, circles, center, radius, equation, chords, arcs, proportionally, proofs, geometric constructions, conjecture, coordinate plane, geometric relationships				

Generalizations	Guiding	Guiding Questions		
My students will Understand that	Factual	Conceptual		
Arc length determines the interdependent relationship of inscribed, circumscribed and central angles of a circle. (MA10-GR.HS-S.4-GLE.2-EO.e)	What is the relationship between inscribed, central, and circumscribed angles of a circle that subtend to the same arc?How does the measure of the central angle help you find the area of the corresponding sector?	Why are inscribed, central, and circumscribed angles of a circle independent with each other when they subtend the same arc?		
The center and radius of the circle constrain the equation by providing location and size. (MA10-GR.HS-S.4-GLE.3- EO.a.i.1, 2)	What is equation of a circle? Within the equation of the circle, where is the center and the radius?	How does the Pythagorean Theorem define all points on a circle with a given center and radius? Why is the radius of a circle perpendicular to the tangent where the radius intersects the circle?		
The length of chords and their corresponding arcs vary proportionally. (MA10-GR.HS-S.4-GLE.2-EO.f)	What is the longest chord in a circle and how do you know?	Why does a radius that bisects an arc also bisect the corresponding chord?		

Geometric constructions create a visual proof by showing a logical progression of statements that prove or disprove a conjecture. (MA10-GR.HS-S.4-GLE.1-EO.a.vi, d.i)	 What is formal geometric construction? How does a geometric construction differ from a geometric drawing or sketch? How does the construction of a perpendicular bisector of a line segment help prove that all the points on the bisector are equidistant from the endpoints of the segment? How does the construction of the medians of a triangle help prove they will always meet at a point? 	How does a geometric construction connect to terms and definitions?
The coordinate plane models algebraically two- dimensional geometric relationships. (MA10-GR.HS-S.4- GLE.3-EO.a.ii)	 What information is needed to calculate the perimeters of polygons and area of triangles and rectangles in the coordinate plane? How can you determine the slope of line parallel or perpendicular to a given line? 	Why is it helpful to model geometric relationships on the coordinate plane? How can the relationship between area and volume be explained through cross-sections and rotations?

Key Knowledge and Skills:	What students will know and be able to do are so closely linked in the concept-based discipline of mathematics. Therefore, in the mathematics
My students will	samples what students should know and do are combined.

- Prove that all circles are similar (MA10-GR.HS-S.4-GLE.2-EO.b.i)
- Identify and describe relationships among inscribed angles, radii, and chords. (MA10-GR.HS-S.4-GLE.2-EO.e.i)
- Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle. (MA10-GR.HS-S.4-GLE.2-EO.e.ii, iii)
- Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. (MA10-GR.HS-S.4-GLE.2-EO.f)
- Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. (MA10-GR.HS-S.4-GLE.3-EO.a.i.1, 2)
- Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle. (MA10-GR.HS-S.4-GLE.1-EO.d.ii)
- Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects. (MA10-GR.HS-S.4-GLE.4-EO.b.i)
- Make formal geometric constructions with a variety of tools and methods. (MA10-GR.HS-S.4-GLE.1-EO.d.i)
- Find the point on a directed line segment between two given points that partitions the segment in a given ratio. (MA10-GR.HS-S.4-GLE.3-EO.a.ii.3)
- Use the distance formula on coordinates to compute perimeters of polygons and areas of triangles and rectangles. (MA10-GR.HS-S.4-GLE.3-EO.a.ii.4)
- Use coordinates to prove simple geometric theorems algebraically. (MA10-GR.HS-S.4-GLE.3-EO.a.ii.1)
- Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems. (MA10-GR.HS-S.4-GLE.3-EO.a.ii.2)

A student in ability to apply and comp through the following sta	can demonstrate the rehend critical language tement(s):	The central angle of a circle is twice the measure of its corresponding inscribed angle.
Academic Vocabulary:	prove, construct, derive, area, equilateral triangle, square, regular hexagon, distance, angle, conjecture, point, circle, define, represent, compare, develop	
Technical Vocabulary:	arc length, inscribed angles, circumscribed angles, central angles, circles, center, radius, equation, chords, arcs, proportionally, sector, diameter, perpendicular, tangent, quadrilateral, equation, bisect, similarity, proofs, geometric constructions, conjecture, coordinate plane, geometric relationships	

Unit Title	Let Poly be Rational		Length of Unit	6 weeks
Focusing Lens(es)	Transformations Structure	Standards and Grade Level Expectations Addressed in this Unit	MA10-GR.HS-S.2-GLE.1 MA10-GR.HS-S.2-GLE.3 MA10-GR.HS-S.2-GLE.4	
Inquiry Questions (Engaging- Debatable):	 What is the square root of negative 1? What are the implications of having a solution to this problem? How did the ancient Greeks multiply binomials and find roots of quadratic equations without algebraic notations? (MA10-GR.HS-S.2-GLE.3-IQ. 			o this problem? /ithout algebraic notations? (MA10-GR.HS-S.2-GLE.3-IQ.2)
Unit Strands	Algebra: Creating Equations Algebra: Arithmetic with Polynomials and Rational Expressions Algebra: Seeing Structure in Expressions Algebra: Reasoning with Equations and Inequalities Functions: Interpreting Functions Geometry: Expressing Geometric Properties with Equations			
Concepts	polynomial expression, polynomial equations, polynomials, closed system, properties of operations, rational expressions, rational equations, radical equations, focus, directrix, parabola, equations, expressions, solutions, extraneous solutions, zeros			
Generalizations		_	Guiding	Questions
My students will Under s	stand that	Fa	ctual	Conceptual
The transformation of polynomial expressions and equations can reveal underlying structures and solutions. (MA10-GR.HS-S.2-GLE.3-EO.a, d, e)		How is factoring used ns. degree greater tha When is it appropriate GR.HS-S.2-GLE.3-IC	to solve a polynomial with a in two? e to simplify expressions? (MA10- Q.1)	How can polynomial identities be used to describe numerical relationships? Why is the remainder theorem useful? How are factors of polynomials connected to zeros of polynomials and solutions of polynomial equations?
Polynomials form a closed system under the operations of addition, subtraction, and multiplication analogous to the integers. (MA10-GR.HS-S.2-GLE.3-EO.c.i)		s of What operations can be will result in anoth How are rational and different from interest.	be done to two polynomials that ler polynomial? irrational numbers similar and gers with respect to closure?	Why is it important to know that polynomials are closed under these operations?
Properties of operations transform rational expressions with the intention of creating more efficient forms of the expression. (MA10-GR.HS-S.2-GLE.3-EO.g)		s How can inspection, lo he systems be used to How do you use facto expression?	ong division and computer algebra o rewrite rational expressions? ring to rewrite a rational	Why do we rewrite rational expressions in different forms? Why can computers solve problems that humans cannot? (MA10-GR.HS-S.2-GLE.4-IQ.3)
Solving rational and radical equations can result in extraneous solutions. (MA10-GR.HS-S.2-GLE.4-EO.b.ii)		How do you check for When do extraneous How can you determin	extraneous solutions? solutions arise? ne if a solution is not viable?	Why do extraneous solutions occur?

Mathematicians use the focus and directrix of a parabola	How can you derive a quadratic equation from a focus	Why does the focus and directix define a parabola?
to derive an equation. (MA10-GR.HS-S.4-GLE.3-EO.a.3)	and directrix?	

Key Knowledge and Skills:	What students will know and be able to do are so closely linked in the concept-based discipline of mathematics. Therefore, in the mathematics
My students will	samples what students should know and do are combined.

- Understand polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication (MA10-GR.HS-S.2-GLE.3-EO.c.i)
- Add, subtract, and multiply polynomials. (MA10-GR.HS-S.2-GLE.3-EO.c.i)
- Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x a is p(a), so p(a) = 0 if and only if (x a) is a factor of p(x).
 (MA10-GR.HS-S.2-GLE.3-EO.d.i)
- Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. (MA10-GR.HS-S.2-GLE.1-EO.c.iv)
- State and apply the remainder theorem. (MA10-GR.HS-S.2-GLE.3-EO.d.i)
- Identify zeros of quadratic, cubic, and quartic polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. (MA10-GR.HS-S.2-GLE.3-EO.d.ii)
- Prove polynomial identities and use them to describe numerical relationships. (MA10-GR.HS-S.2-GLE.3-EO.e.i)
- Use the structure of a polynomial, rational or exponential expression to identify ways to rewrite it. (MA10-GR.HS-S.2-GLE.3-EO.a.ii)
- Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system. (MA10-GR.HS-S.2-GLE.3-EO.g)
- Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise. (MA10-GR.HS-S.2-GLE.4-EO.b.ii)
- Explain each step in solving simple rational or radical equations as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution and construct a viable argument to justify a solution method. (MA10-GR.HS-S.2-GLE.4-EO.b.i)
- Create simple rational equations and exponential and inequalities in one variable and use them to solve problems. (MA10-GR.HS-S.2-GLE.4-EO.a.i)
- Derive the equation of a parabola given a focus and directrix. (MA10-GR.HS-S.4-GLE.3-EO.a.3)

A student in can demonstrate the ability to apply and comprehend critical language through the following statement(s):		By factoring a polynomial function the zeros can be calculated and used, along with the end behavior, to construct a rough graph of the function.	
Academic Vocabulary:	solve, graph, identify, prove, rewrite, equality, solve, explain, create, state, apply, structure, construct, argument, justify, method		
Technical Vocabulary:	polynomial expression, polynomial equations, polynomials, closed system, properties of operations, rational expressions, rational equations, radical equations, focus, directrix, parabola, equations, expressions, solutions, extraneous solutions, zeros, end behavior, factor, factorization, degree, derive, polynomial identities, functions, Remainder theorem, radicals, inspection, long division, quotient, remainder, divisor, degree of polynomial		

Unit Title	Sine of the Times		Length of Unit	5 weeks
Focusing Lens(es)	Relationships Modeling	Standards and Grade Level Expectations Addressed in this Unit	MA10-GR.HS-S.2-GLE.1 MA10-GR.HS-S.2-GLE.2 MA10-GR.HS-S.4-GLE.2	
Inquiry Questions (Engaging- Debatable):	 How does the periodicity in the unit circle correspond to the periodicity in graphs of models of periodic phenomena? (MA10-GR.HS-S.2-GLE.2-EO.c) Why can the same class of functions model diverse types of situations (e.g., sales, manufacturing, temperature, and amusement park rides)? 			
Unit Strands	Functions: Interpreting Functions Functions: Trigonometric Functions			
Concepts	unit circle, coordinate plane, trigonometric functions, angles, model, periodic phenomena			

Generalizations	Guiding Questions		
My students will Understand that	Factual	Conceptual	
The unit circle in the coordinate plane represents the trigonometric functions for any angle. (MA10-GR.HS-S.2- GLE.1-EO.f.ii), (MA10-GR.HS-S.2-GLE.4-EO.d) and (MA10- GR.HS-S.4-GLE.2-EO.d)	How is the circumference of a unit circle used to determine the radian measure of an angle?Given an angle, how is the unit circle used to determine each of the trigonometric functions?How are the relationships of right triangles used to determine the trigonometric functions of an angle?	How is the Pythagorean identity represented in the unit circle? How does the Pythagorean Identity illustrate the inverse nature of the relationship between sine and cosine?	
Trigonometric functions model periodic phenomena. (MA10-GR.HS-S.2-GLE.2-EO.c.i, iv)	What situations would it be appropriate to model with trigonometric?How are frequency, midline and amplitude reflected in the equation of a trigonometric function?	Why would the parent trigonometric function change in period, midline and amplitude for a given situation?	

Key Knowledge and Skills:	What students will know and be able to do are so closely linked in the concept-based discipline of mathematics. Therefore, in the
My students will	mathematics samples what students should know and do are combined.

- Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle. ((MA10-GR.HS-S.2-GLE.1-EO.f.i)
- Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle. (MA10-GR.HS-S.2-GLE.1-EO.f.ii)
- Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. (MA10-GR.HS-S.2-GLE.2-EO.c.i)
- Prove the Pythagorean identity sin²(θ) + cos²(θ) = 1 and use it to find sin(θ), cos(θ), or tan(θ) given sin(θ), cos(θ), or tan(θ) and the quadrant of the angle. (MA10-GR.HS-S.2-GLE.4-EO.d)

A student in ability to apply and comp through the following sta	can demonstrate the rehend critical language tement(s):	I know the sine of an angle in the first two quadrants of the unit circle is always positive.
Academic Vocabulary:	explain, prove, graph, key featu	res, interpret, angles, model, counterclockwise, clockwise,
Technical Masshulamu	unit ciucle consulinate alega tui	
i echnical vocabulary:	unit circle, coordinate plane, tri Pythagorean identity, sine, cosi	gonometric functions, periodic phenomena, radian measure, subtend, amplitude, frequency, midline, period, ne, tangent, arc length, real numbers, quadrant

Unit Title	Function App Length of Unit 6 weeks		6 weeks	
Focusing Lens(es)	Structure Visualization	Standards and Grade Level Expectations Addressed in this Unit	MA10-GR.HS-S.1-GLE.2 MA10-GR.HS-S.2-GLE.1 MA10-GR.HS-S.2-GLE.2 MA10-GR.HS-S.2-GLE.3 MA10-GR.HS-S.2-GLE.4	
Inquiry Questions (Engaging- Debatable):	• Why are functions necessary to the design and building of skyscrapers? (MA10-GR.HS-S.2-GLE.1-IQ.7)			
Unit Strands	Number and Quantity: Quantities Algebra: Creating Equations Algebra: Reasoning with Equations and Inequalities Algebra: Seeing Structure in Expressions Functions: Interpreting Functions Functions: Building Functions Functions: Linear, Quadratic, and Exponential Models			
Concepts	functions, nonlinear, model, graph, visualization, key features, domain, range, maxima, minima, intercepts, symmetry, end behavior, average rate of change, rate, systems of nonlinear functions, solutions, linear functions, logarithms, exponential, inverse			

Generalizations	Guiding Questions		
My students will Understand that	Factual	Conceptual	
The modeling of nonlinear relationships between two quantities requires the use of appropriate functions. (MA10-GR.HS-S.1-GLE.2-EO.a.ii), (MA10-GR.HS-S.2-GLE.3- EO.b.ii) and (MA10-GR.HS-S.2-GLE.4-EO.a.ii)	How can you determine from a table or context, which function models the relationship between two quantities? What phenomena can be modeled with particular functions? (MA10-GR.HS-S.2-GLE.2-IQ.2) What are residuals and how do I calculate them?	 How do you use the key features of families of functions to determine the appropriate function for a given situation? Why do we classify functions? (MA10-GR.HS-S.2-GLE.2-IQ.1) Why is a geometric series modeled with an exponential function? 	
Mathematicians can predict the effects on a graph when replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative). (MA10- GR.HS-S.2-GLE.1-EO.e.i)	What is the impact of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative)?	Why are the effects on a graph predictable when replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative)?	

The visualization of a variety of functions on a coordinate plane helps to interpret of key features, such as domain, range, maxima, minima, intercepts, symmetry, end behavior and average rate of change. (MA10-GR.HS-S.2- GLE.1-EO.b.i, c)	 What are important characteristics of a function that can be seen on a graph? What do the graphs of linear, exponential, square root, cube root, step and absolute value functions look like? How can you identify zeros of polynomial functions from a graph? What kinds of symmetry are found in even and odd functions? 	 Why are multiple types of functions needed to model real world phenomena? How does visualizing a function help interpret the relationship between two variables? How is the graph of an equation related to its solutions? Why is it helpful to know if a function is even or odd? Why is it necessary to know the symmetry and degree of a polynomial to graph it?
Mathematicians interpret the average rate of change of a function over a specified interval to investigate the rate at which one quantity changes with respect to another quantity. (MA10-GR.HS-S.2-GLE.1-EO.b.iii)	How can you investigate the average rate of when a function is presented graphically, symbolically or as a table?What is the relationship between an average rate of change of any function and the slope of a linear function?	Why is the average rate of change important when investigating a function?Why do some functions require average rates of change to be investigating over a specified interval versus the entire function?
Systems of non-linear functions create solutions set more complex than those of systems of linear functions. (MA10- GR.HS-S.2-GLE.4-EO.e.ii)	How can you determine from a graph or table of values the solutions to a system of equations? When solving a system of non-linear equations, how many solutions could exist?	Why is it often necessary to approximate solutions to non-linear systems of equations using a table or graph?
Inverse functions facilitate the efficient computation of inputs of the original function. (MA10-GR.HS-S.2-GLE.1-EO.e.iii)	What is the relationship of the graph of an its inverse? When is it necessary to limit the domain of a inverse function?	How do inverses functions expand our understanding of an original function? Why are inverses important in mathematical modeling?
Logarithms, the inverse of exponential functions, provide a mechanism for transforming and solving exponential functions. (MA10-GR.HS-S.2-GLE.2-EO.a.iv)	How can you use the properties of exponents to represent an exponential function as a logarithm?	How are logarithms used to solve exponential functions? Why are logarithms inverses of exponential functions? (MA10-GR.HS-S.2-GLE.1-IQ.3)

Key Knowledge and Skills: My students will		What students will know and be able to do are so closely linked in the concept-based discipline of mathematics. Therefore, in the mathematics samples what students should know and do are combined.
My • • • •	Define appropriate quantities for Create equations in two or mor EO.a.ii) Explain why the x-coordinates or approximately, e.g., using techri polynomial, rational, absolute v Interpret key features of graphs a verbal description of the relat Graph exponential and logarithe GLE.1-EO.c.iv) Identify the effect on exponentia and negative); find the value of GLE.1-EO.e.i, ii) Compare properties of two fund by verbal descriptions). (MA10- Calculate and interpret the aver estimate the rate of change from Solve an equation of the form for Express as a logarithm the solut EO.a.iv) Derive the formula for the sum	<i>mathematics samples what students should know and do are combined.</i> or the purpose of descriptive modeling. (MA10-GR.HS-S.1-GLE.2-EO.a.ii) e variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (MA10-GR.HS-S.2-GLE.4- of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions toology to graph the functions, make tables of values, or find successive approximations and include cases where $f(x)$ and/or $g(x)$ are linear, alue, exponential, and logarithmic functions. (MA10-GR.HS-S.2-GLE.4-EO.e.ii) es and tables, for a polynomial, logarithmic, or trigonometric function, in terms of the quantities, and sketch graphs showing key features given ionship. (MA10-GR.HS-S.2-GLE.1-EO.b.i) mic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. (MA10-GR.HS-S.2- tial, polynomial, logarithmic, or trigonometric graphs of replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive k given the graphs and experiment with cases and illustrate an explanation of the effects on the graph using technology. (MA10-GR.HS-S.2- ctions (e.g., polynomial, logarithmic, or trigonometric) each represented in a different way (algebraically, graphically, numerically in tables, or GR.HS-S.2-GLE.1-EO.c.v.3) rage rate of change of polynomial, logarithmic, or trigonometric functions (presented symbolically or as a table) over a specified interval and m a graph. (MA10-GR.HS-S.2-GLE.1-EO.b.ii) (x) = c for a simple function f that has an inverse and write an expression for the inverse. (MA10-GR.HS-S.2-GLE.1-EO.e.iii) ion to $ab^{ct} = a$ where a , c , and d are numbers and the base b is 2, 10, or e ; evaluate the logarithm using technology. (MA10-GR.HS-S.2-GLE.2- of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems.
•	Find inverse functions by solving EO.e.iii)	action by plotting and analyzing residuals. (MA10-GR.HS-S.2-GLE.1-EO.b.ii.2) g an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. (MA10-GR.HS-S.2-GLE.1-

A student in can demonstrate the ability to apply and comprehend critical language through the following statement(s):		A graph of a function provides a visualization of key features of the function such as the domain, range, maxima, minima, intercepts, symmetry, end behavior and average rate of change.	
Academic Vocabulary:	define, create, explain, intersection, find, approximate, interpret, description, relationship, express, formula, sketch, graphs, tables		
Technical Vocabulary:	ry: functions, nonlinear, model, visualization, key features, domain, range, maxima, minima, intercepts, symmetry, end behavior, average rate of change, rate, systems of nonlinear functions, solutions, linear functions, logarithms, exponential, inverse, odd, even, polynomial, logarithmic, trigonometric, geometric series, derive, rational, absolute value, base		