Curriculum Development Course at a Glance
Planning for High School Mathematics

gor			
Content Area	Mathematics	Grade Level \quad High School	
Course Name/Course Code	Geometry		
Standard	Grade Level Expectations (GLE)		GLE Code
1. Number Sense, Properties,	1. The complex number system includes real numbers and imaginary numbers		MA10-GR.HS-S.1-GLE. 1
	2. Quantitative reasoning is used to make sense of quantities and their relationships in problem situations		MA10-GR.HS-S.1-GLE. 2
2. Patterns, Functions, and Algebraic Structures	1. Functions model situations where one quantity determines another and can be represented algebraically, graphically, and using tables		MA10-GR.HS-S.2-GLE. 1
	2. Quantitative relationships in the real world can be modeled and solved using functions		MA10-GR.HS-S.2-GLE. 2
	3. Expressions can be represented in multiple, equivalent forms		MA10-GR.HS-S.2-GLE. 3
	4. Solutions to equations, inequalities and systems of equations are found using a variety of tools		MA10-GR.HS-S.2-GLE. 4
3. Data Analysis, Statistics, and Probability	1. Visual displays and summary statistics condense the information in data sets into usable knowledge		MA10-GR.HS-S.3-GLE. 1
	2. Statistical methods take variability into account supporting informed decisions making through quantitative studies designed to answer specific questions		MA10-GR.HS-S.3-GLE. 2
	3. Probability models outcomes for situations in which there is inherent randomness		MA10-GR.HS-S.3-GLE. 3
4. Shape, Dimension, and Geometric Relationships	1. Objects in the plane can be transformed, and those transformations can be described and analyzed mathematically		MA10-GR.HS-S.4-GLE. 1
	2. Concepts of similarity are foundational to geometry and its applications		MA10-GR.HS-S.4-GLE. 2
	3. Objects in the plane can be described and analyzed algebraically		MA10-GR.HS-S.4-GLE. 3
	4. Attributes of two- and three-dimensional objects are measurable and can be quantified		MA10-GR.HS-S.4-GLE. 4
	5. Objects in the real world can be modeled using geometric concepts		MA10-GR.HS-S.4-GLE. 5

Curriculum Development Overview
Unit Planning for High School Mathematics

Generalizations My students will Understand that...	Guiding Questions	
Undefined notions of point, line, and distance create precision definitions for geometric terms upon which concepts and proofs are built. (MA10-GR.HS-S.4-GLE.1- EO.a.i)	How do we define geometric objects such as angle, circle, line segment, parallel and perpendicular lines? What makes a good definition of a shape? (MA10- GR.HS-S.4-GLE.1-IQ.4) What does it mean for two lines to be parallel? (MA10-GR.HS-S.4-GLE.3-IQ.1)	How does knowing precise definitions help create geometric proof?
Geometric constructions create a visual proof by showing a logical progression of statements that prove or disprove a conjecture. (MA10-GR.HS-S.4-GLE.1-EO.a.vi, d.i)	What is formal geometric construction? How does a geometric construction differ from a geometric drawing or sketch? How does the construction of a perpendicular bisector of a line segment help prove that all the points on the bisector are equidistant from the endpoints of the segment?	How does a geometric construction connect to terms and definitions? help prove they will always meet at a point?

Curriculum Development Overview

Unit Planning for High School Mathematics

Stated assumptions, definitions, and previously established results help in the construction of proofs. (MA10-GR.HS-S.4-GLE.1-EO.c)	How are assumptions and definitions used in proof? How can you prove relationships between angles formed when transversal intersects parallel lines? How do previously proved ideas about parallel lines support conjectures and proofs about triangles and parallelograms?	Why are proofs an integral part of geometry? How does writing a proof deepen your understanding of geometric concepts?
The coordinate plane models algebraically two- dimensional geometric relationships. (MA10-GR.HS-S.4- GLE.3-EO.a.ii)	What information is needed to calculate the perimeters of polygons and area of triangles and rectangles in the coordinate plane?	Why is it helpful to model geometric relationships on the coordinate plane?
Gow can you determine the slope of line parallel or perpendicular to a given line?		
Goints in the plane as inputs and give unique corresponding points as outputs. (MA10-GR.HS-S.4-GLE.1- EO.a.iii)	What function operations work with transformations? How can you compare transformations?	Why are transformations functions?
Rigid transformations preserve distance and angle. (MA10-GR.HS-S.4-GLE.1-EO.a)	What do non-rigid transformations preserve? How can I use transformations to prove to figures are congruent?	Why is it important that rigid transformations preserve distance and angle?

Curriculum Development Overview

Unit Planning for High School Mathematics

Key Knowledge and Skills
 My students will...

What students will know and be able to do are so closely linked in the concept-based discipline of mathematics. Therefore, in the mathematics samples what students should know and do are combined.

- Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc. (MA10-GR.HS-S.4-GLE.1-EO.a.i)
- Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments. (MA10-GR.HS-S.4-GLE.1-EO.a.vi)
- Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using. (MA10-GR.HS-S.4-GLE.1-EO.a.vii)
- Specify a sequence of transformations that will carry a given figure onto another. (MA10-GR.HS-S.4-GLE.1-EO.a.viii)
- Prove theorems about lines, angles, triangles, and parallelograms. (MA10-GR.HS-S.4-GLE.1-EO.c)
- Use coordinates to prove simple geometric theorems algebraically. (MA10-GR.HS-S.4-GLE.3-EO.a.ii.1)
- Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems. (MA10-GR.HS-S.4-GLE.3-EO.a.ii.2)
- Make formal geometric constructions with a variety of tools and methods. (MA10-GR.HS-S.4-GLE.1-EO.d.i)
- Find the point on a directed line segment between two given points that partitions the segment in a given ratio. (MA10-GR.HS-S.4-GLE.3-EO.a.ii.3)
- Use the distance formula on coordinates to compute perimeters of polygons and areas of triangles and rectangles. (MA10-GR.HS-S.4-GLE.3-EO.a.ii.4)
- Represent transformations in the plane using; describe transformations as functions that take points in the plane as inputs and give other points as outputs. (MA10-GR.HS-S.4-GLE.1-EO.a.ii, iii)
- Compare transformations that preserve distance and angle to those that do not (MA10-GR.HS-S.4-GLE.1-EO.a.iv)

Critical Language: includes the Academic and Technical vocabulary, semantics, and discourse which are particular to and necessary for accessing a given discipline.
EXAMPLE: A student in Language Arts can demonstrate the ability to apply and comprehend critical language through the following statement: "Mark Twain exposes the hypocrisy of slavery through the use of satire."

A student in
 \qquad can demonstrate the ability to apply and comprehend critical language through the following statement(s):

I can use coordinates of the vertices of a quadrilateral to show it is a rectangle by calculating the slopes and lengths of each side.

Academic Vocabulary: definitions, inputs, outputs, , distance, angle, conjecture, point, circle, define, represent, compare, develop, prove, triangles, rectangles

Technical Vocabulary:

undefined terms, proofs, transformations, functions, rigid transformations, geometric constructions, coordinate plane, perpendicular lines, parallel lines, line segment, rotations, reflections, translations, distance formula, slope, partitions,

Curriculum Development Overview Unit Planning for High School Mathematics

[^0]
Curriculum Development Overview

 Unit Planning for High School Mathematics
Key Knowledge and Skills:

 My students will...What students will know and be able to do are so closely linked in the concept-based discipline of mathematics. Therefore, in the mathematics samples what students should know and do are combined.

- Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself. (MA10-GR.HS-S.4-GLE.1-EO.a.v)
- Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent. (MA10-GR.HS-S.4-GLE.1-EO.b.i, ii)
- Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent. (MA10-GR.HS-S.4-GLE.1-EO.b.iii)
- Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions. ((MA10-GR.HS-S.4-GLE.1-EO.b.iv)
- Verify experimentally the properties of dilations given by a center and a scale factor. (MA10-GR.HS-S.4-GLE2-EO.a.i)
- Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. (MA10-GR.HS-S.4-GLE2-EO.a.ii, iii)
- Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar. (MA10-GR.HS-S.4-GLE2-EO.a.iv)
- Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. (MA10-GR.HS-S.4-GLE2-EO.b.iii)
- Prove that all circles are similar. (MA10-GR.HS-S.4-GLE2-EO.b.ii)

Critical Language: includes the Academic and Technical vocabulary, semantics, and discourse which are particular to and necessary for accessing a given discipline. EXAMPLE: A student in Language Arts can demonstrate the ability to apply and comprehend critical language through the following statement: "Mark Twain exposes the hypocrisy of slavery through the use of satire."

A student in ___ can demonstrate the
ability to apply and comprehend critical language through the following statement(s):

I can use rigid transformations to show that necessary and sufficient combinations of congruent sides and angles prove triangles congruent.
The dilation is the only transformation that produces similar polygons because it stretches or shrinks line segments.

Academic Vocabulary:	prove, verify, identify, compare, analyze, develop, sufficient, necessary, transformation, definition, criteria
Technical Vocabulary:	dilation, center, transformation, scale factor, magnitude, direction, congruence, corresponding angles, corresponding sides, proportionality, rigid transformations, vertical angles, rotation, translation, reflection, congruence, theorem, similarity, congruence, proportionality

Curriculum Development Overview Unit Planning for High School Mathematics

Unit Planning for High School Mathematics				
Unit Title	3 Rights Don't Make A....		Length of Unit	4 weeks
Focusing Lens(es)	Relationships St Len A	Standards and Grade Level Expectations Addressed in this Unit	MA10-GR.HS-S.4-GLE. 2	
Inquiry Questions (Engaging- Debatable):	- How can you determine the measure of something that you cannot measure physically? (MA10-GR.HS-S.4-GLE.2-IQ.1)			
Unit Strands	Geometry: Similarity, Right Triangles, and Trigonometry			
Concepts	sides ratios, angles, right triangle, trigonometric functions, similar triangles			
Generalizations My students will Understand that...		Factual Guiding Questions ${ }^{\text {Conceptual }}$		
The relationship between the side ratios and angles of a right triangle define the trigonometric functions. (MA10-GR.HS-S.4-GLE.2-EO.c)		What are trigonometric ratios? What is the relationship of the sine and cosine of complementary angles?		How does similarity explain that the side ratios in right triangles are a function of the angles of the triangle? How do we know that the sine of all 30 degree angles is the same?
Mathematicians use similar triangles to prove generalizable relationships. (MA10-GR.HS-S.4-GLE.2EO.b.i)		How can you use right triangle similarity to prove the Pythagorean Theorem? How can similar triangle be used to prove that a line parallel to one side of a triangle divides the other two proportionally?		Why are similar triangles the foundation for mathematical proofs about side lengths of triangles?

Key Knowledge and Skills: My students will...

What students will know and be able to do are so closely linked in the concept-based discipline of mathematics. Therefore, in the mathematics samples what students should know and do are combined.

- Prove theorems about similar triangles. (MA10-GR.HS-S.4-GLE.2-EO.b.i)
- Understand through similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles. (MA10-GR.HS-S.4-GLE.2-EO.c.i)
- Explain and use the relationship between the sine and cosine of complementary angles. (MA10-GR.HS-S.4-GLE.2-EO.c.ii)
- Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. (MA10-GR.HS-S.4-GLE.2-EO.c.iii)

Curriculum Development Overview

Unit Planning for High School Mathematics

Critical Language: includes the Academic and Technical vocabulary, semantics, and discourse which are particular to and necessary for accessing a given discipline.
EXAMPLE: A student in Language Arts can demonstrate the ability to apply and comprehend critical language through the following statement: "Mark Twain exposes the hypocrisy of slavery through the use of satire."

A student in ___ can demonstrate the ability to apply and comprehend critical language
 through the following statement(s):

Academic Vocabulary: prove, explain, right triangles,

[^1]
Curriculum Development Overview

 Unit Planning for High School Mathematics| Unit Planning for High School Mathematics | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Unit Title | What Goes Around | | Length of Unit | 4 weeks |
| Focusing Lens(es) | Interdependence | Standards and Grade Level Expectations Addressed in this Unit | MA10-GR.HS-S.4-GLE. 1 MA10-GR.HS-S.4-GLE. 2 MA10-GR.HS-S.4-GLE. 3 | |
| Inquiry Questions (EngagingDebatable): | - Do perfect circles naturally occur in the physical world? If so, how do we model them? (MA10-GR.HS-S.4-GLE.2-IQ.4)
 - Why are circles at the foundation of constructions? | | | |
| Unit Strands | Geometry: Circles
 Geometry: Expressing Geometric Properties with Equations
 Geometry: Congruence | | | |
| Concepts | arc length, inscribed angles, circumscribed angles, central angles, circles, center, radius, equation, chords, arcs, proportionally | | | |

Generalizations My students will Understand that...	Factual	
Arc length determines the interdependent relationship of inscribed, circumscribed and central angles of a circle. (MA10-GR.HS-S.4-GLE.2-EO.e)	What is the relationship between inscribed, central, and circumscribed angles of a circle that subtend to the same arc? How does the measure of the central angle help you find the area of the corresponding sector?	Why are inscribed, central, and circumscribed angles of a circle independent with each other when they subtend the same arc?
The center and radius of the circle constrain the equation by providing location and size. (MA10-GR.HS-S.4-GLE.3- EO.a.i.1, 2)	What is equation of a circle? Within the equation of the circle, where is the center and the radius?	How does the Pythagorean Theorem define all points on a circle with a given center and radius?
Why is the radius of a circle perpendicular to the tangent where the radius intersects the circle?		
The length of chords and their corresponding arcs vary		
proportionally. (MA10-GR.HS-S.4-GLE.2-EO.f)		

Curriculum Development Overview

Unit Planning for High School Mathematics

Key Knowledge and Skills: My students will...

What students will know and be able to do are so closely linked in the concept-based discipline of mathematics. Therefore, in the mathematics samples what students should know and do are combined.

- Identify and describe relationships among inscribed angles, radii, and chords. (MA10-GR.HS-S.4-GLE.2-EO.e.i)
- Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle. (MA10-GR.HS-S.4-GLE.2-EO.e.ii, iii)
- Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. (MA10-GR.HS-S.4-GLE.2-EO.f)
- Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation (MA10-GR.HS-S.4-GLE.3-EO.a.i.1, 2)
- Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle. (MA10-GR.HS-S.4-GLE.1-EO.d.ii)

Critical Language: includes the Academic and Technical vocabulary, semantics, and discourse which are particular to and necessary for accessing a given discipline.
EXAMPLE: A student in Language Arts can demonstrate the ability to apply and comprehend critical language through the following statement: "Mark Twain exposes the hypocrisy of slavery through the use of satire."

A student in
 \qquad can demonstrate the ability to apply and comprehend critical language through the following statement(s):

Academic Vocabulary: prove, construct, derive, area, equilateral triangle, square, regular hexagon

[^2] perpendicular, tangent, quadrilateral, equation, bisect, similarity

Curriculum Development Overview
Unit Planning for High School Mathematics

Unit Planning for High School Mathematics				
Unit Title	On The Catwalk		Length of Unit	4 weeks
Focusing Lens(es)	Structure Sta Lev Modeling Add	dards and Grade Expectations essed in this Unit	MA10-GR.HS-S.4-GLE. 4 MA10-GR.HS-S.4-GLE. 5	
Inquiry Questions (Engaging- Debatable):	- How might surface area and volume be used to explain biological differences in animals? (MA10-GR.HS-S.4-GLE.3-IQ.1)			
Unit Strands	Geometry: Modeling with Geometry Geometry: Geometric Measurement and Dimension			
Concepts	perimeter, area, volume, patterns, models, measurements, decisions			
Generalizations My students will Understand that...		Factual Guiding Questions Conceptual		
Underlying and related structures of perimeter, area and volume can reveal patterns within complex objects.(MA10-GR.HS-S.4-GLE.4-EO.a, b)		How does the relationship between the volumes of a cone and its corresponding cylinder help us find the volume of a pyramid? How is the area of an irregular shape measured? (MA10-GR.HS-S.4-GLE.4-IQ.2) How can surface area be minimized while maximizing volume? (MA10-GR.HS-S.4-GLE.4-IQ.3)		Why is the formula for the circumference of a circle necessary for deriving the area of a circle? How can the relationship between area and volume be explained through cross-sections and rotations?
Geometric models chosen and created with the use of appropriate measurements deepen understandings of empirical situations and improve decision-making. (MA10-GR.HS-S.4-GLE.5-EO.a)		How are mathematical objects different from the physical objects they model? (MA10-GR.HS-S.4-GLE.5-IQ.1) How can the geometric concepts of area and volume model density? What makes a good geometric model of a physical object or situation? (MA10-GR.HS-S.4-GLE.5-IQ.2)		Why are ratios an important component of geometric modeling?

Curriculum Development Overview

Unit Planning for High School Mathematics

Key Knowledge and Skills:
My students will...

What students will know and be able to do are so closely linked in the concept-based discipline of mathematics. Therefore, in the mathematics samples what students should know and do are combined.

- Use geometric shapes, their measures, and their properties to describe objects. (MA10-GR.HS-S.4-GLE.5-EO.a.i)
- Apply concepts of density based on area and volume in modeling situations. (MA10-GR.HS-S.4-GLE.5-EO.a.ii)
- Apply geometric methods to solve design problems. (MA10-GR.HS-S.4-GLE.5-EO.a.iii)
- Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. (MA10-GR.HS-S.4-GLE.4-EO.a.i)
- Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. (MA10-GR.HS-S.4-GLE.4-EO.a.ii)
- Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects. (MA10-GR.HS-S.4-GLE.4-EO.b.i)

Critical Language: includes the Academic and Technical vocabulary, semantics, and discourse which are particular to and necessary for accessing a given discipline.
EXAMPLE: A student in Language Arts can demonstrate the ability to apply and comprehend critical language through the following statement: "Mark Twain exposes the hypocrisy of slavery through the use of satire."
A student in \qquad can demonstrate the ability to apply and comprehend critical language through the following statement(s):

Academic Vocabulary: perimeter, area, volume, patterns, models, measurements, decisions, apply, design problems, informal arguments, two-dimensional, threedimensional
Technical Vocabulary: geometric properties, density, formulas, cylinders, pyramids, cones, spheres, cross-sections, rotations, circumference

[^0]: Authors of the Sample: Stephanie Berns (Widefield 3); Tiffany Utoft (Thompson R-2J)
 High School, Mathematics

[^1]: Technical Vocabulary: similar triangles, sine, cosine, tangent, trigonometric ratios, Pythagorean Theorem, complementary angles, parallel lines

[^2]: Technical Vocabulary:
 arc length, inscribed angles, circumscribed angles, central angles, circles, center, radius, equation, chords, arcs, proportionally, sector, diameter,

