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The impetus for this paper can be traced back to two simple questions that most 
parents likely ask at some point in time during their child s education: 1) How much has 
my child learned? 2) Is the amount my child has learned good enough? These are 
straightforward and intuitively important questions about growth. The first asks a 
question about the magnitude of growth. The second asks a question about criteria for 
judging the amount of growth. While the questions may be intuitive, the psychometric 
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Once decisions about what constitutes good enough are decided, does this eliminate questions of 
magnitude? Or are both questions compatible, such that posing one will tend to beg an answer to 
the other? 
 
In what follows we pose a research question that is also deceptively straightforward: Do 
interpretations of student growth depend on the way longitudinal test scores have been scaled? 
This paper provides a theoretical and empirical context where one can give a provisional answer 
of no to this question. We show that when growth interpretations are made normatively, they 
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we focus attention on student growth estimates aggregated at the school-level that derive from a 
growth model currently being used for state accountability purposes in Colorado and 
Massachusetts and the value-added estimates produced by multivariate mixed-effects models. 
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Introduction  

The impetus for this paper can be traced back to two simple questions that most 

parents likely ask at some point in time during their child s education:  1) How much has 

my child learned? 2) Is the amount my child has learned good enough?  These are 

straightforward and intuitively important questions about growth.  The first asks a 

question about the magnitude of growth.  The second asks a question about criteria for 

judging the amount of growth. While the questions may be intuitive, the psychometric 

and statistical gymnastics involved in coming up with a defensible answer are not.  

Indeed, the deceptively simple nature of the questions masks important conceptual and 

philosophical undercurrents.  Learning of what?  How should learning be measured? Can 

a single number capture this phenomenon? Who decides how much learning is good 

enough? Once decisions about what constitutes good enough are decided, does this 

eliminate questions of magnitude? Or are both questions compatible, such that posing one 

will tend to beg an answer to the other? 

Most of the psychometric and statistical obstacles to the measurement and 

evaluation of change in student achievement have been well-known (at least in academic 

circles) since the publications of Cronbach & Furby (1970), Rogosa et al., (1982), and 

Willet (1988) among others.  What has changed with the advent of NCLB is the way that 

test scores and statistical models have become intermingled as a primary basis for 

holding teachers and schools accountable for changes in student learning (c.f., Ryan & 

Shepard, 2008).  This intermingling has led to renewed confusions about the differences 
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between criterion and norm-referenced interpretations of growth, and the properties of the 

underlying test score scales that are needed to support these interpretations.   

In what follows we pose a research question that is also deceptively 

straightforward: Do interpretations of student growth depend on the way longitudinal test 

scores have been scaled?  This paper provides a theoretical and empirical context where 

one can give a provisional answer of no to this question.  We show that when growth 

interpretations are made normatively, they appear insensitive to most admissible 

transformation of the underlying score scale.  In particular we focus attention on student 

growth estimates aggregated at the school-level that derive from a growth model 

currently being used for state accountability purposes in Colorado and Massachusetts and 

the value-added estimates produced by multivariate mixed-effects models. The former 

model relies upon quantile regression, an approach not requiring an underlying score 

scale with interval properties.  The latter value-added model assumes interval scale 

properties. The two models present a contrast allowing us to examine both the within-

methodology impact of non-interval scales as well as the impact across methodologies.   

Background: Growth Models and Value-Added  

We begin by clarifying some different meanings that are possible when one uses 

the umbrella term growth model .  All statistical models for test score growth are 

essentially models of conditional achievement.  A key distinguishing feature is whether 

one wishes to model student achievement that is conditional on time, or student 
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achievement that is conditional on prior achievement.  We refer to the former as an 

absolute growth model and the latter as a relative growth model.   

An absolute growth model can be used to answer the first of the motivating 

questions we posed earlier: How much has student achievement changed from one grade 

to the next? or At what rate is student achievement changing across multiple grades?  

Some examples of widely known absolute growth models are the multilevel models of 

change over time popularized by Raudenbush & Bryk (2002) and Singer & Willet (2004).  

Gain score models constitute a constrained version of such models when only two 

longitudinal time points are available. A key assumption of such models is that test scores 

have been placed onto a vertical scale to adjust for differences in difficulty such that the 

magnitudes of scores across grades can be directly and meaningfully compared in an 

absolute sense.   

In contrast, relative growth models do not require a vertically linked scale, only 

prior test scores that are strongly associated with subsequent test scores. These models 

answer a different question about student achievement: Compared to students with the 

same prior achievement, is current achievement higher or lower than would be 

expected?  This question specifies a normative answer to the first question (How much 

has my child learned?).  The key quantities of interest in a relative growth model are 

residuals: the difference between any student s observed achievement, and that which 

would be predicted given their prior achievement.  It is this residual that provides a 

normative quantification of growth: growth above or below statistical expectation.  The 

ways that these residuals are computed vary in complexity from simple linear regression 

models (where the conditioning of current achievement on prior achievement is most 
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transparent) to multivariate mixed effects models (where current achievement is layered 

upon transformations of prior achievement), but the basic principle of relative growth as 

the difference between expected and observed remains the same.   

As they continue to evolve, state-level systems of educational accountability are 

increasingly using growth models in both of the flavors described above as a means of 

judging the quality of teachers and schools.  This has only become widely possible within 

the past decade in response to NCLB.  Before then most states did not test students in 

multiple content domains annually between the elementary and high-school years.  The 

creation of a longitudinal infrastructure through which student achievement can be linked 

to schools (and sometimes teachers) over time might be viewed as one positive 

consequence of NCLB provided that this data is used in ways that are valid.   

The leap from a growth model to what can be called a value-added model is a 

short one.  It requires three steps 

1. The definition of what constitutes expected test performance for a given 

unit of analysis (e.g., student, teacher or school). 

2. The computation of some deviation from expectation that contrasts what 

has been observed to what would be expected for the unit of analysis. 

3. The inference that the deviation from expectation reflects the value-

added to student achievement by the unit of analysis. 

While it is true that all growth models can be turned into value-added models, for relative 

growth models this transition is the most seamless because statistical expectation is 

usually implicit in such models.  Indeed, for the layered model popularized by William 

Sanders (cf., Sanders et al., 1997), the estimation of value-added quantities is the sole 
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purpose of the model, hence there is no transition through steps 1-3 above the model 

jumps directly to step 3.  For thorough discussions of the issues surrounding the 

specification and interpretation of value-added models see McCaffrey et al (2004), Lissitz 

(2005), and a forthcoming special issue of the journal Education Finance and Policy.   

Ordinal or Interval?  

When test scores are used as the longitudinal outcome measures for relative 

growth models, it is typically assumed that test score outcomes are continuous 

variables that is, that they exist on a scale with interval properties.  This is assumption 

is made whether or not test scores have been vertically scaled to have a developmental 

interpretation over time.  Ballou (2008) has recently called this assumption into question 

in the context of using growth models to estimate the value-added effects of teachers on 

student achievement.  At issue is whether the application of item response theory (IRT) 

models can and/or should be expected to produce an interval test score metric.  Ballou 

notes correctly we think that there is considerable confusion in the research literature 

on this point.    

There appear to be at least two schools of thought on this issue among 

psychometricians (interestingly, it is not always clear that members of each school of 

thought are entirely aware of the salient theoretical distinctions that may divide them).  

One school of thought can be represented by those who implicitly ascribe to what Michell 

(1986; 1990) and Hand (1996) have described as a classical theory of measurement.  This 
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theory might best be captured by the aphorism If it exists, it can be measured.  If it can t 

be measured, it doesn t exist. According to Hand 

Developing a measurement procedure according to the classical theory requires relating the 

hypothesized quantitative attributes to observable quantities within some theoretical framework.  

The hypothesized quantitative attributes can then be measured by virtue of their relationships. 

Here the hypothesized attributes, as well as their quantitative nature, are all part of the theory 

being studied. Rasch s notion of specific objectivity might be regarded as fitting naturally within 

this framework According to the classical theory measurements are always real numbers: if (our 

emphasis) we have been able to measure them, the numbers which have resulted satisfy all the 

properties required for arithmetic manipulation, so we can manipulate them using any statistical 

operation. (pp. 457-458) 

That is, in classical measurement there essentially is no such thing as an ordinal measure.  

If one is unable to quantify differences in magnitude, one is not doing measurement at 

all! In contrast, the second school of thought is based on the notion of representational 

measurement theory, in which empirical, qualitative data relationships are observed, and 

then rules are established to characterize these relationships numerically.  Michell (1986) 

describes the core of representational theory through a quotation from Townsend & 

Ashby (1984):  

The fundamental thesis is that measurement is (or should be) a process of assigning numbers to 

objects in such a way that interesting qualitative empirical relations among the objects are 

reflected in the numbers themselves as well as in important properties of the number system. (p. 

394) 

The most famous example of this perspective is Stevens s (1946) classification of scales 

as nominal, ordinal, interval and ratio. The fact that this terminology has become 

relatively universal in most forms of quantitative analysis is an indication that the 
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representational view has become somewhat predominant1.  A nod toward the 

representational view is also implicit in the writings of many well-known American 

psychometricians2 (c.f., Harris (2007), Kolen & Brennan (2004), Thissen & Orlando 

(2001), Yen (1986) and Zwick (1992)).   

The bridge between these two theories of measurement is the concept of conjoint 

measurement first established by Luce & Tukey (1964).  Loosely speaking, conjoint 

additivity implies that two attributes can be scaled such that their additive combination 

forms a third measure.  (The classic example used by Rasch was of the relationship 

between force (f), mass (m) and acceleration (a) in Newton s second law of motion after 

taking logarithms: A = F + M where A = log(a), F = log(f) and M = -log(m).) When 

conjoint additivity holds, a measured quantity (e.g.,, the log odds of a correct item 

response) possesses interval properties because invariant comparisons can be made 

between two attributes (e.g., person ability and item difficulty).  This gets to the heart of a 

fundamental misconception rooted in the assertion that there is nothing uniquely interval 

about the metric of , which has never been the claim under conjoint measurement.  As 

Zwick (1992) points out, it is not 

 

that is (necessarily) interval, but the log odds of a 

correct item response.  The interval properties of logits are established by the joint 

relationship between person ability and item difficulty.  Indeed, it would be possible for 

the logit scale to be interval according to conjoint measurement principles even if  itself 

                                                

 

1 Though certainly not universal.  For example, in his monograph Rasch Models for Measurement, 
Andrich (1988) explicitly rejects the use of Steven s scale classifications.  
2 This might be a bit of an overstatement is the sense that many psychometricians may fall more squarely in 
a third school of thought that Michell refers to as the operational theory of measurement.  According to 
operational theory, the numbers don t remember where they came from hence there is no rule governing 
the use of arithmentic operations as a function of scale type.  In operationalism, measurement is defined by 
Stevens s dictum that measurement is the assignment of numerals to objects or events according to rules. 
Such a definition (which ignores much of Stevens s representational perspective) is broad enough to 
encompass almost any formal measurement procedure. One might say that operationalists are defined more 
by what they do not endorse as a strict definition of requirements for measurement than what they do.  
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were only ordinal. However, it is possible to express a test respondent s value of in 

terms of its location on the logit scale. Because of this, when item responses meet the 

requirements of the Rasch Model, and when respondents and test items cover the full 

range of the ability distribution (this second condition is often overlooked), then one can 

support the claim that IRT produces a scale (logits) with interval properties.  It would 

seem to follow from this that whether one is an adherent of classical or representational 

measurement theory, if a scale is desired for which magnitude should have consistent 

meaning, then the psychometric focus of test development should be to create tests that 

satisfy the constraints of the Rasch Model3. This does not seem to be the case in practice. 

Our premise in this paper is that the conventional wisdom among 

psychometricians responsible for the development of large-scale tests for state testing 

programs is that score scales are ordinal, not interval.  We suspect that the reason for this 

is the tenet, consistent with representational measurement theory, that the job of the 

psychometrician is to take the data she/he is given and make the most of it.  One cannot 

weave gold from straw.  Empirically, test items do not discriminate equally; they are not 

distributed along the full theta scale; they may not be unidimensional (especially when 

they are being linked vertically).  More to the point, even if the assumptions of the Rasch 

Model were met, there is no satisfactory way to validate that conjoint additivity has been 

established.  (Ballou takes this one step further by questioning whether interval scales 

established through conjoint additivity are even theoretically appealing relative to other 

                                                

 

3 Ballou suggests that interval properties for the 2PL and 3PL models could also be supported (in theory) if 
polynomial conjoint measurement could be established.  This essentially boils down to restricting the range 
of the scale to a span that would support invariant person by item comparisons (for example, the range of 
the scale where ICCs do not cross).  
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possible alternatives.)  Given all this, the most pragmatic approach is to proceed under 

the assumption that IRT scales are ordinal in nature. 

There is nothing objectionable with this approach if the way that test score scales 

are being used to compute statistics is consistent with their fundamental properties.  In 

this sense, the classification of students into performance levels as mandated under 

NCLB is entirely consistent with a belief that what tests measure is ordinal, not interval.  

But what might happen when psychometricians and state assessment directors proceed as 

if the scale was ordinal while policymakers and applied researchers use and interpret the 

scale as though it was interval?  This seems particularly salient in the context of growth 

modeling.  If the scale is ordinal, then any monotonic transformation of the scale is 

considered admissible.  This appears to be why, in the context of vertical scaling 

applications, both Kolen & Brennan (2004) and Harris (2007) make the point that the 

concept of growth has no empirical definition, but can only be established externally4.  

Through the use of monotonic transformations, both the magnitude and variability of 

grade to grade scale score changes can be manipulated to take on any desired pattern (i.e., 

large gains and constant variance, small gains and increasing variance, etc.).  Ballou 

(2008) suggests that this may make the estimation and interpretation of value-added 

quantities decidedly equivocal.  In what follows we put this conjecture to an empirical 

test.  

                                                

 

4 This second assertion (that growth must be established externally through some theory of how student 
learn in each subject area) seems to contradict the philosophy of representational measurement theory that 
theory should follow from data and not the other way around.  In spirit it is seems more closely aligned to a 
classical theory of measurement! 
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Methods  

Data  

The data we use in this study are longitudinal item responses from the Colorado 

Students Assessment Program (CSAP) reading test.  The CSAP reading test has a vertical 

scale based on a common item nonequivalent groups linking design that was established 

by the state s test contractor, CTB/McGraw-Hill, in 2001.  The longitudinal score scales 

used in the present study derive from data we obtained from the Colorado Department of 

Education for two cohorts of students.  The first cohort included students who were in 

grade 3 in 2003 and grade 6 in 2006; the second cohort included students who were in 

grade 4 in 2003 and grade 7 in 2006. Using these two cohorts of students and common 

items between adjacent grades and years, we created a vertical score scale using the 

combination of a 3PLM/GPCM IRT models, separate calibration and ML estimation (for 

details see Briggs & Weeks, in press).  This scale, which we labeled SEP3ML serves as 

the base scale in our analyses.  All subsequent scales are monotonic transformations of 

this base scale. All scales are expressed in the logit metric and are applied only to those 

students in cohort 1 for our subsequent growth modeling comparisons.   

Monotonic Scale Transformations  

We applied three types of monotonic transformations to our base scale 

(SEP3ML). 
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1. Minor adjustments to means and SDs by grade 

a. Linear growth and constant SD (TLC) 

b. Linear growth and increasing SD (TLI) 

c. Nonlinear growth and constant SD (TNC) 

d. Nonlinear growth and increasing SD (TNI) 

2. More extreme adjustment to means and SDs by grade to decrease overlap 

in score distributions. (TMO) 

3. Lord s transformation: exp(SEP3ML) = (TLORD) 

The scales were transformed in approaches 1a-1d through the following process.  

First, the scores were multiplied by a grade-specific numeric factor so that the standard 

deviation of scores within each grade remained constant (at 1 logit) or increased (by .1 

logits).  Second, a grade-specific numeric factor was added to each score.  This latter 

adjustment was derived by regressing longitudinal scores on time (linear case) or on time 

and time squared (nonlinear case).  In approach 2, we set growth to be linear with a 

constant SD, but forced the amount of growth to be .5 logits (half of an SD) per year.  

Approaches 1 and 2 represent the kinds of policy-based scale transformations that have 

either occurred at the state level, or would not be considered surprising if they did occur.  

They would be admissible transformations if one only believes the underlying scale is 

ordinal rather than interval.  Approach 3 represents our attempt to break the scale. 

Unlike the transformations in approaches 1 and 2, which were done so that grade to grade 

means and SDs would follow a pattern that looks right, the exponential transformation 

in approach 3 is based solely on Lord s (1980) observation that such a transformation 
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could be applied to the theta metric while maintaining the same item response 

probabilities.    

Figure 1.  Comparison of Scale Transformations in Effect Size Units 
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Yen (1986) defined an effect size statistic for purposes of comparing year to year 

growth along a vertical scale as 

Effect Size = 

  

upper lower

upper
2

lower
2

2

, 

where upper  and lower  represent the mean scale scores for the higher and lower grades or 

years in the scale respectively, and 
2
upper  and 

2
lower  represent the respective variance for 

the scores in each grade or year.  Figure 1 plots the effect sizes for the different scales we 
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created.  Note that in an absolute sense, these scales tell very different stories about 

student growth in reading, and each story is admissible  if the underlying scale is 

ordinal.  The question of interest here is whether such differences will have an impact on 

the normative interpretations of growth in student achievement when aggregated at the 

school-level.  

Value-Added Estimates from the Layered Model  

Our first model is a constrained version of the layered model (i.e., 

TVAAS/EVAAS) described by Sanders et al. (1997) and McCaffrey, et al. (2004).  The 

model is constrained because it only uses a single longitudinal cohort and one test subject 

(reading). There is a further constraint in the sense that Lockwood et al. (2007) refer to 

the layered model as a complete persistence  model because it assumes that teacher 

and/or school effects5 remain constant over time.  Note that because the model only 

considers longitudinal data for a single cohort of students, in the present context a 

school effect and a grade effect are the same thing.  Applying it to each of the 

transformed scales we created for the time period from 2003 to 2006 yields the following 

system of equations 

03 03 03 03

04 04 03 04 04

05 05 03 04 05 05

06 06 03 04 05 06 06.

i i

i i

i i

i i

Y

Y

Y

Y

      

(1) 

                                                

 

5 The term residual is actually more appropriate characterization of t than the term 
effect, but we use the latter to be consistent with the literature. 



15 

In the equations above, the 'i sY  represents the CSAP reading test score for student i in a 

given year and grade, and 's  denotes the state test score mean for a given year.  (By 

coincidence that last digit in each year corresponds to the associated grade level of a 

student in the longitudinal cohort.) Each year/grade-specific  represents a vector of 

school effects.  Finally, the 'i s  represents the test score residual associated with student 

i in a given year.  Both t  and it  are assumed to be independent latent random variables 

(where the subscript t indexes year), where ~ ( , )it MVN 0 and ~ (0, )t N .  These 

equations are linked together through the intercorrelations of the 'i s .  We note the 

following about the school-level parameters in these equations.   

 

First, the parameter vectors 04 05 06{ , , } represent the value-added by schools to the 

achievement of students in grades 4, 5 and 6 respectively.  This is in contrast to the 

parameter vector 03 , which captures pre-existing differences in school status as of 

grade 3. These parameters are specified in the model under the constraint that they are 

independent across years.  

 

Second, while the model above can be easily extended to allow for multivariate test 

outcomes (typical of applications of the EVAAS by Sanders), background covariates, 

and a term that links school effects to specific students in the event that students attend 

more than one school in a given year (c.f., Lockwood et al., 2007, p. 127-128), we have 

chosen this simpler specification in order to focus attention on the relationship between 

differences in our choice of the underlying scale and the resulting schools effect 

estimates.   
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Third, we obtain estimates for our school-level parameters via Bayesian estimation 

procedures using an application developed by J. R. Lockwood and described in 

Lockwood et al. (2007).  For each school in a grades 4 through 6, we are able to 

estimate a posterior distribution of the school s value-added effect on student reading 

performance.  We subsequently use the mean of this posterior distribution as a point 

estimate for this effect.  Value-added effect have a normative interpretation in the 

layered model, and can be interpreted as the deviation from the average Colorado 

public school. Finally, because many students in Colorado transition from elementary 

school to middle school after grade 5, the total number of schools for which effects are 

estimated decreases from 950 to 640 as of 2006. 

The layered model is a multivariate mixed effects model, and in some sense it straddles 

the fence in our distinction between models of absolute and relative growth. Because it 

does not condition on prior achievement within any of its grade-specific layers, it can be 

conceptualized as an absolute growth model.  For this reason, as Ballou et. al (2004) note, 

the layered model appears to require longitudinal test scores that have been vertically 

scaled.  On the other hand, the layered model is solely used to produce estimates of 

school or teacher-level value-added, quantities that have a purely relative, norm-

referenced interpretation.    

Student-Growth Percentiles (SGPs) from Quantile Regression  

Our second model is a relative growth model currently used by Colorado and 

Massachusetts to report student growth and approved for Colorado by the U.S. 
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Department of Education as part of the Growth Model Pilot Program. To quantify student 

growth normatively, a student s current score is located within the conditional 

distribution of current scores based upon all prior scores to give a student growth 

percentile: The percentile of a student s current score within their corresponding 

conditional distribution translates to a probability statement of a student obtaining that 

score taking account of prior achievement. That is: 

Student Growth Percentile = Pr(Current Achievement | Past Achievement) · 100. 

Calculation of a student s growth percentile is based upon the estimation of the 

conditional density associated with a student s score at time t using the student s prior 

scores at times 1, 2, . . . , t  1 as the conditioning variables. Given the conditional 

density for the student s score at time t, the student s growth percentile is defined as the 

percentile of the score within the time t conditional density. By examining a student s 

current achievement with regard to the conditional density, the student s growth 

percentile normatively situates the student s outcome at time t taking account of past 

student performance. The percentile result reflects the likelihood of such an outcome 

given the student s prior achievement. In the sense that the student growth percentile 

translates to the probability of such an outcome occurring (i.e., rarity), it is possible to 

compare the progress of individuals not beginning at the same starting point. However, 

occurrences being equally rare do not necessarily imply that they are equally good . 

Qualifying student growth percentiles as good , (in)adequate , or as satisfying a 

year s growth is a standard setting procedure requiring external criteria (e.g., growth 

relative to state performance standards) combined with the wisdom and judgments of 

stakeholders. 
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Estimation of the conditional density is performed using quantile regression 

(Koenker, 2005). Whereas linear regression methods model the conditional mean of a 

response variable Y, quantile regression is more generally concerned with the estimation 

of the family of conditional quantiles of Y. The simplest example involves the estimation 

of the median regression line (quantile =0.5). This line models the conditional median of 

the response variable instead of the conditional mean. Figure 2 shows a scatterplot with 

both the mean and median regression lines:  

Figure 2.  Illustration of Two Different Regression Lines: Conditional Mean vs. Median 
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In addition to the median regression line, regression lines for each quartile, decile, 

or any quantile can be examined. As such, quantile regression provides a more complete 

picture of both the conditional distribution associated with the response variable. 

The techniques are ideally suited for estimation of the family of conditional quantile 

functions. Using quantile regression, the conditional density associated with each 
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student's prior scores is derived and used to situate the student's most recent score. 

Position of the student's most recent score within this density can then be used to qualify 

deficient/sufficient/excellent growth. Though many state assessments possess a vertical 

scale, such a scale is not necessary to calculate student growth percentiles. 

To accommodate non-linearity, heteroskedasticity, and skewness of the 

distribution, non-parametric B-spline smoothing is employed. B-splines are attractive 

both theoretically and computationally in that they are appropriate given the known 

patterns of variability along test scales, seldom lead to estimation problems (Harrell, 

2001, p. 20), and are simple to implement in available software. Calculation of student 

growth percentiles is performed using R (R Development Core Team, 2009), a language 

and environment for statistical computing, with the SGP package (Betebenner, 2009). 

Other possible software (untested with regard to student growth percentiles) with quantile 

regression capability include SAS and Stata.   

For the present data, student growth percentiles (SGPs) are computed for the 

students in our longitudinal cohort separately for three grades: grade 4 (conditioning on 

grade 3), grade 5 (conditioning on grades 3 and 4), and grade 6 (conditioning on grades 3, 

4 and 5).  These SGPs are then aggregated to the school-level by taking the median.  We 

do not refer to school-level SGPs as value-added estimates for two reasons. First, no 

residual has been computed (though this could be done easily enough by subtracting the 

50th percentile), and second, we wish to avoid the causal inference that high or low SGPs 

can be explained by high or low school quality (for details, see Betebenner, 2008).    
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Results  

We organize our presentation of results as follows.  First, we compare the 

correlations of school-level estimates by grade across our seven different test scales 

within our two growth modeling approaches.  Next, we correlate and plot the school-level 

estimates across growth models by grade holding the underlying base scale constant.  In 

both our within and across model comparisons we also present correlations of value-

added estimates with two key school by grade specific measures of status: the percentage 

of students eligible for free or reduced price school lunches (FRL), and the mean of prior 

year reading achievement on the CSAP  A big part of the theoretical appeal of value-

added estimates is that they should be much less correlated (some would even claim 

uncorrelated) with these sorts of status measures.  Of interest is whether and to what 

extent the correlations between value-added and status vary by scale and growth model.  

Finally, we include correlations with the mean of current year reading achievement on the 

CSAP.  There is no reason to expect value-added estimates to be uncorrelated with this 

measure (in fact, one would expect a positive correlation since schools with higher 

student growth/value-added over the last year should, on average, demonstrate high 

achievement at the end of the growth/value-added cycle), but it serves as a useful 

descriptive statistic.  



21 

Comparisons Across Scales Within Growth Model  

The theory behind the use of quantile regression provides invariance to monotonic 

transformation of scale with regard to the dependent variable (Koenker, 2005, p. 39). 

With regard to transformations across both independent and dependent variables, the 

expectation is that it will be invariant to such transformations of the underlying score 

scale. Our empirical results support this.  In almost all cases the median school-level 

SGPs in each grade were perfectly correlated across the seven different scales we created. 

The one exception were correlations with the scale created by applying the exp 

transformation (TLORD), but even in this case median SGPs correlated .98 with SGPs 

based on the other scales.  In addition, the correlations between SGPs and school-level 

status measures also remain constant across scales.  We conclude that it is safe to say that 

the interpretations of SGPs are not scale-dependent.   

The correlation between median SGP and percent free/reduced lunch is 

moderately negative across the three year/grade analyses ranging from -0.42, -0.25, to -

0.39 in grade/year 4/2004, 5/2005, and 6/2006, respectively. Note that when prior (or 

current) achievement is correlated with free/reduced lunch percentage (without 

conditioning upon prior achievement), the correlations are very strong in absolute 

magnitude, more than -0.8 in almost all instances, confirming the long held 

understanding of the relationship between achievement and poverty.  

Correlations between median SGP and prior achievement range from 0.34, 0.18,  

to 0.31 in grade/year 4/2004, 5/2005, and 6/2006, respectively. These result suggest that 

schools that higher achieving students tend to, on average, show higher normative rates 
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of growth than schools serving lower achieving students. Making the inferential leap 

that student growth is solely caused by the school and sources of influence therein, the 

results translate to saying that schools serving higher achieving students tend to, on 

average, be more effective than schools serving lower achieving students.  The 

correlations between median SGP and current achievement are (tautologically) higher 

reflecting the fact that students growing faster show higher rates of achievement that is 

reflected in higher average rates of achievement at the school level.   

Table 1. Correlation Table of 2004, Grade 4, LM Value-Added Estimates by Scale, 
Free/Reduced Lunch Percentage, Prior and Current Mean Theta   

S3ML

 

TLC TLI TNC TNI TMO

 

TLORD

 

FRL

 

PRIOR

 

THETA

 

THETA 
04 

SEP3ML 1.00 0.96 0.87 0.96 0.87 0.95 0.30 -0.15

 

-0.11 0.23 

TLC 0.96 1.00 0.97 1.00 0.97 1.00 0.52 -0.38

 

0.17 0.49 

TLI 0.87 0.97 1.00 0.97 1.00 0.97 0.66 -0.52

 

0.38 0.67 

TNC 0.96 1.00 0.97 1.00 0.97 1.00 0.52 -0.38

 

0.17 0.49 

TNI 0.87 0.97 1.00 0.97 1.00 0.97 0.66 -0.52

 

0.38 0.67 

TMO 0.95 1.00 0.97 1.00 0.97 1.00 0.52 -0.38

 

0.17 0.49 

TLORD 0.30 0.52 0.66 0.52 0.66 0.52 1.00 -0.68

 

0.78 0.87 

FRL -0.15 -0.38 -0.52 -0.38 -0.52 -0.38 -0.68 1.00

 

-0.77 -0.81 

PRIOR 
THETA 

-0.11 0.17 0.38 0.17 0.38 0.17 0.78 -0.77

 

1.00 0.93 

THETA04 0.23 0.49 0.67 0.49 0.67 0.49 0.87 -0.81

 

0.93 1.00 
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Table 2. Correlation Table of 2005, Grade 5, LM Value-Added Estimates by Scale, 
Free/Reduced Lunch Percentage, Prior and Current Mean Theta   

S3ML

 
TLC TLI TNC TNI TMO

 
TLORD

 
FRL

 
PRIOR

 
THETA

 
THETA 

05 

SEP3ML 1.00 1.00 0.95 1.00 0.95 1.00 0.45 -0.06

 
-0.09 0.20 

TLC 0.96 0.95 0.85 0.95 0.85 0.95 0.36 0.12

 
-0.27 0.00 

TLI 1.00 1.00 0.96 1.00 0.96 1.00 0.48 -0.10

 

-0.04 0.24 

TNC 0.95 0.96 1.00 0.96 1.00 0.96 0.59 -0.33

 

0.22 0.49 

TNI 1.00 1.00 0.96 1.00 0.96 1.00 0.48 -0.10

 

-0.04 0.24 

TMO 0.95 0.96 1.00 0.96 1.00 0.96 0.60 -0.33

 

0.22 0.49 

TLORD 1.00 1.00 0.96 1.00 0.96 1.00 0.47 -0.10

 

-0.04 0.24 

FRL 0.45 0.48 0.59 0.48 0.60 0.47 1.00 -0.47

 

0.48 0.60 

PRIOR 
THETA 

-0.06 -0.10 -0.33 -0.10 -0.33 -0.10 -0.47 1.00

 

-0.86 -0.86 

THETA05 -0.09 -0.04 0.22 -0.04 0.22 -0.04 0.48 -0.86

 

1.00 0.95 

 

Table 3. Correlation Table of 2006, Grade 6, LM Value-Added Estimates by Scale, 
Free/Reduced Lunch Percentage, Prior and Current Mean Theta   

S3ML

 

TLC TLI TNC TNI TMO

 

TLORD

 

FRL

 

PRIOR

 

THETA

 

THETA 
06 

SEP3ML 1.00 0.98 1.00 0.98 1.00 0.98 0.51 -0.51

 

0.39 0.62 

TLC 0.98 1.00 0.98 1.00 0.98 1.00 0.43 -0.36

 

0.22 0.47 

TLI 1.00 0.98 1.00 0.98 1.00 0.98 0.50 -0.50

 

0.39 0.62 

TNC 0.98 1.00 0.98 1.00 0.98 1.00 0.43 -0.36

 

0.22 0.47 

TNI 1.00 0.98 1.00 0.98 1.00 0.98 0.50 -0.50

 

0.39 0.62 

TMO 0.98 1.00 0.98 1.00 0.98 1.00 0.43 -0.36

 

0.22 0.47 

TLORD 0.51 0.43 0.50 0.43 0.50 0.43 1.00 -0.48

 

0.52 0.58 

FRL -0.51 -0.36 -0.50 -0.36 -0.50 -0.36 -0.48 1.00

 

-0.84 -0.87 

PRIOR 
THETA 

0.39 0.22 0.39 0.22 0.39 0.22 0.52 -0.84

 

1.00 0.96 

THETA06 0.62 0.47 0.62 0.47 0.62 0.47 0.58 -0.87

 

0.96 1.00 

  

Much of the comparisons across scales within the layered model also indicate a 

lack of sensitivity to the monotonic scale transformations we consider.  The correlations 

across scales (shown in Tables 1-3) tend to be very strong with the notable exception of 

the TLORD scale.  Value-added estimates based on the TLORD scale tended to be 

weakly to moderately correlated with estimates based on the other six scales.  Again, 
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there is no good reason why one would create a scale by applying this sort of 

transformation, but our intent was to see whether an extreme transformation could be 

found that would lead to distortions in the value-added estimates from the layered model, 

and in this sense we were successful.  

It is not clear from our analyses whether the lack of perfect correlation between 

the scales is due to the transformation altering assumptions necessary for linearity to hold 

over time, altering the scale such that whatever interval nature is assumed changes 

dramatically from scale to scale, or for some other reason. In applications of such models 

it is worthwhile to know how violations of assumptions can lead to different results. We 

hope to tease out these factors in greater detail in later research. 

One interesting pattern (consistent with previous finding by Briggs & Weeks) is 

that scale transformations that involved increases to the grade to grade variability of the 

base scale (TLI and TNI) led to small decreases in subsequent correlations of the 

associated value-added estimates across other scales in which variability was held 

constant (TLC, TNC, TMO) or was estimated empirically (SEP3ML).  An unexpected 

finding with respect to the layered model is that scale transformations appear to have an 

impact on the correlation with measures of school-level status.  For example, in grade 4 

the correlation of value-added estimates deriving from our base scale with FRL% was 

.15 .  This correlation shifts to .38  under the TLC, TNC and TMO scales and .52

 

under the TLI and TNI scales.  A similar pattern is found for the TLI and TNI results in 

grade 5 (though not for the TLC, TNC and TMO scales).  As of grade 6, all scales 

(including the base scale) exhibit a weak to moderate negative correlation with FRL%, 

but we note that the pattern of differential correlations as a function of transformation to 
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scale variability are still evident.  When grade to grade scale variability is increased, 

correlations of grade-specific value-added estimates with measures of school-level status 

also increase in absolute magnitude.  

Table 4. 2004 Correlations of School-level Estimates by Model & Status Measures 
(Schools >= 50 Students)   

SGP LM FRL_2004 PRIOR 
THETA 

CURRENT 
THETA 

SGP  1.00 0.72 -0.42 0.34 0.59 

LM 0.72 1.00 -0.15 -0.11 0.23 

FRL_2004 -0.42 -0.15 1.00 -0.77 -0.81 

PRIOR THETA 0.34 -0.11 -0.77 1.00 0.93 

CURRENT THETA 0.59 0.23 -0.81 0.93 1.00 

 

Note: School-level estimates from use of base scale (SEP3ML) for CSAP Reading Test, N = 557

  

Table 5. 2005 Correlations of School-level Estimates by Model & Status Measures 
(Schools >= 50 Students)   

SGP LM FRL_2005 PRIOR 
THETA 

CURRENT 
THETA 

SGP 1.00 0.84 -0.25 0.18 0.42 

LM 0.84 1.00 -0.06 -0.09 0.20 

FRL_2005 -0.25 -0.06 1.00 -0.86 -0.86 

PRIOR THETA 0.18 -0.09 -0.86 1.00 0.95 

CURRENT THETA 0.42 0.20 -0.86 0.95 1.00 

Note: School-level estimates from use of base scale (SEP3ML) for CSAP Reading Test, N = 569

  

Table 6. 2006 Correlations of School-level Estimates by Model and Status Measures 
(Schools >= 50 Students)   

SGP LM FRL_2006 PRIOR 
THETA 

CURRENT 
THETA 

SGP 1.00 0.91 -0.39 0.31 0.52 

LM 0.91 1.00 -0.51 0.39 0.62 

FRL_2006 -0.39 -0.51 1.00 -0.84 -0.87 

PRIOR THETA 0.31 0.39 -0.84 1.00 0.96 

CURRENT THETA 0.52 0.62 -0.87 0.96 1.00 

Note: School-level estimates from use of base scale (SEP3ML) for CSAP Reading Test, N = 380
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Table 7. 2004 Correlations of Grade 4 School-level Estimates by Model and Status 
Measures (All Schools)   

SGP LM FRL_2004 PRIOR 
THETA 

CURRENT 
THETA 

SGP 1.00 0.69 -0.31 0.25 0.59 

LM 0.69 1.00 -0.13 -0.09 0.30 

FRL_2004 -0.31 -0.13 1.00 -0.68 -0.69 

PRIOR THETA 0.25 -0.09 -0.68 1.00 0.89 

THETA04 0.59 0.30 -0.69 0.89 1.00 

Note: School-level estimates from use of base scale (SEP3ML) for CSAP Reading Test, N = 940

  

Table 8. 2005 Correlations of Grade 5 School-level Estimates by Model and Status 
Measures (All Schools)               

Table 9. 2006 Correlations of Grade 6 School-level Estimates by Model and Status 
Measures (All Schools)          

SGP LM FRL_2005 PRIOR 
THETA 

CURRENT 
THETA 

SGP 1.00 0.79 -0.18 0.14 0.43 

LM 0.79 1.00 -0.05 -0.10 0.21 

FRL_2005 -0.18 -0.05 1.00 -0.75 -0.73 

PRIOR THETA 0.14 -0.10 -0.75 1.00 0.93 

CURRENT THETA 0.43 0.21 -0.73 0.93 1.00 

Note:  School-level estimates from use of base scale (SEP3ML) for CSAP Reading Test, N = 948

  

SGP LM FRL_2006 PRIOR 
THETA 

CURRENT 
THETA 

SGP 1.00 0.82 -0.24 0.25 0.51 

LM 0.82 1.00 -0.35 0.29 0.53 

FRL_2006 -0.24 -0.35 1.00 -0.68 -0.68 

PRIOR THETA  0.25 0.29 -0.68 1.00 0.92 

CURRENT THETA 0.51 0.53 -0.68 0.92 1.00 

Note:  School-level  estimates from use of base scale (SEP3ML) for CSAP Reading Test, N = 637
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Comparisons Across Growth Models Within Base Scale  

Tables 4-6 and 7-9 present the correlations of school-level estimates deriving 

from the SGP and the layered model (LM) by grade.  In tables 4-6 these correlations are 

based only upon schools with at least 50 students tested in a given grade.  Tables 7-9 

include all schools regardless of the number of tested students.  In tables 4-6 the 

correlations of school-level estimates between the two models are .72, .84 and .91 for 

grades 4, 5 and 6 respectively.  When all schools are considered (tables 7-9), the 

respective correlations decrease slightly to .69, .79 and .82.  Figures 3a-3c (included as a 

separate document) give a graphical depiction of the relationship between SGP and LM 

estimates for each grade.  The size of each bubble in the plot represents the number of 

students in a given school in that grade.  The shade of each bubble indicates the school-

level quintile of prior reading achievement.   

The plots are divided into four quadrants.  The quadrants of greatest interest are II 

and IV.  Schools landing in these quadrants exhibit growth that is better than expected 

under one model but worse than expected under the other.  These are examples of 

potential classification errors.  It is primarily for the grade 4 estimates (where the 

correlations between LM estimates and SGPs are lowest) that we see a cluster of unusual 

estimates in quadrant II.  These are schools that appear to be relatively high-growth using 

SGPs but low-growth using the LM.  Interestingly they tend to be schools in the highest 

grade 3 achievement quintile.  

We note that in general across all three plots, there are many examples of small 

schools with rather high or low SGPs (relative to what would be expected for the average 
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school the median SGP) that have LM estimates of value-added that are much less 

extreme (again relative to what would be expected for the average school the state 

average of residuals, 0).  This is a reflection of the fact that the LM produces shrunken 

value-added estimates while median SGP are not shrunk. This distinction gets to the heart 

of what differs between a growth model and a value-added model. The median SGP 

describes the growth of a typical student without ascribing responsibility (i.e., value-

added) for that growth. The students, in effect, are fixed. The shrunken VAM estimate 

reflects the uncertainty associated with the attribution of effectiveness to the unit based 

upon so few observations. As Koenker notes (Koenker, 2005, p. 278), shrinkage 

ultimately has the effect of adding pseudo-observations to the fixed effects estimator that, 

in effect, pulls the result toward the grand mean indicating the lack of certainty associated 

with effectiveness being any different than the average effectiveness found in the district.  

We now turn to the correlations of school estimates with our three school-level 

measures of status.  In grades 4 and 5 there is a fairly clear pattern in model comparisons.  

Value-added estimates based on both quantile regression and the LM tend to both be 

weakly correlated with FRL% and prior achievement, and the correlations are always 

larger for SGPs.  For grade 6 this pattern changes: under the LM the value-added 

correlations with FRL% and prior achievement become considerably stronger in fact, 

the correlations become larger in magnitude for the LM than for the quantile regression 

model.  In contrast, note that the correlations for the QR model stay for the most part 

consistent with those found in grades 4 and 5.  This is true whether we consider value-

added estimates based on only those schools with more than 50 tested students, or on all 

available schools. 
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Discussion  

Is growth in student achievement scale dependent?  If growth is understand in 

terms of magnitude then the magnitude of student growth is scale dependent. When 

growth is understood normatively, then the answer is equivocal. We have shown two 

modeling approaches where growth interpretations appear (for the most part) insensitive 

to reasonable monotonic transformations to the underlying score scale.  In the case of the 

SGPs produced by QR, this is a theoretical feature of the model (only an ordinal score 

scale for the outcome variable is required), and we have demonstrated this feature 

empirically.  For the LM, on the other hand, a vertical scale with interval properties is 

generally considered to be a requirement. However, in this empirical context, we find that 

the ordering of school-level value-added estimates was largely insensitive all our scale 

transformations (with the exception of the TLORD scale).  The only place where we see 

sensitivity to the choice of scale for the LM is in the correlation between value-added 

estimates and measures of school-level status.  In particular, there appears to be an 

interaction between the underlying scale transformation and the grade level for which 

value-added school effects have been estimated with the present data.  We are still in the 

process of investigating this interaction. 

Both the QR approach and LM share something in common: both approaches 

produce quantities that provide for normative, rather than criterion-referenced 

interpretations of growth.  Both models allow us to assess whether conditional 

achievement is good enough from a norm-referenced perspective.  However, there is an 
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important philosophical difference between the two modeling approaches in that 

Betebenner (2008) has focused upon the use of SGPs as a descriptive tool to characterize 

growth at the student-level, while the LM is typically the engine behind the teacher or 

school effects that get produced for inferential purposes in the EVAAS.  Nonetheless, in 

this application we find that the correlations between school-level SGPs from QR and 

value-added estimates from the LM tend to be strongly correlated.  This correlation of 

grade-specific school effects grows stronger as more prior test scores are used as 

conditioning variables in the QR used to estimate SGPs. Note that in contrast to QR, the 

LM adjusts estimated effects in earlier grades on the basis of both prior and subsequent 

test score performance of students.  This is why, in principle, one would expect, LM 

value-added estimates to have a weaker correlation with school-level measures of status 

than that found with QR SGP estimates.  This is generally the case here with the 

exception of the anomalous findings in grade 6. 

Given our results, should vertical score scales with interval properties be 

considered a desirable and/or necessary feature of an accountability system hoping to 

answer questions about growth?  Our take is that if we wish to answer intuitively 

meaningful questions about how much a student has learned, then a strong argument can 

be made that vertical scales with interval properties are both desirable and necessary.  For 

models of absolute growth in which criterion-referenced interpretations are of interest, 

vertical scales are central to the endeavor.  In this context it is useful to remember the 

other term often used synonymously with vertical scales: developmental scales.  

However, given the vertical scales currently in use, their existence is far from sufficient 
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Unfortunately at present we see limited evidence that states and their test 

contractors are working in tandem to create test score metrics that could plausibly 

measure and communicate information about magnitudes of student learning.  One 

obstacle to this might be a failure of the psychometric community to have sustained and 

serious dialogues about the premises under which score scales are being developed 

(Michell, 2000).  If the underlying scale is only ordinal, then it may not be reasonable to 

compare means and SDs by subgroups, or to use longitudinal data with models of 

absolute growth.  If an interval scale is essential to the planned use of test scores, than we 

see no workable way around the need for a Rasch family IRT model.  The present state of 

affairs among vertical scales in large-scale assessment has brought us to a point where 

statements about magnitudes of criterion-referenced growth are largely meaningless.  But 

just because something has not been done well does not mean that it can t be done nor 

should not be done at all.  
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