Colorado Measures of Academic Success

CMAS Grade 6 Mathematics Frameworks

Concepts and skills explicitly identified in the Colorado Academic Standards (CAS) are the basis for the Colorado Measures of Academic Success (CMAS) assessment. CMAS Mathematics Frameworks list the percent representation and number of score points for each of the reporting categories and standards areas that appear on the summative assessments. They also specify the Evidence Outcomes that are included on the state assessments. The Prepared Graduate Statements in the CAS, or the Standards for Mathematical Practice (SMP), provide the basis for Subclaims C and D, Reasoning and Modeling tasks. These tasks are based on grade-level math standards and securely held knowledge from the previous grade level. Reasoning tasks engage in practices reflected in Prepared Graduate Statements SMP 3, Construct Viable Arguments and Critique the Reasoning of Others, and SMP 6, Attend to Precision. Modeling tasks engage in the practices reflected in SMP 4, Model with Mathematics. Each Content Standard is assessed in each grade level.

Reporting Category	Colorado Academic Standards Summative Assessment Framework-FINAL Math Grade 6	\% of Score Points of Total Test	Points
Subclaim A	Major Content	39-40	20
	Number and Quantity Grade Level Expectation: 6.RP.A. Ratios \& Proportional Relationships: Understand ratio concepts and use ratio reasoning to solve problems. Evidence Outcomes: 1. Apply the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote Candidate A received, Candidate C received nearly three votes." (CCSS: 6.RP.A.1) 2. Apply the concept of a unit rate $\frac{a}{b}$ associated with a ratio a : b with $b \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $\frac{3}{4}$ cup of flour for each cup of sugar." "We paid $\$ 75$ for 15 hamburgers, which is a rate of $\$ 5$ per hamburger." (Expectations for unit rates in this grade are limited to non-complex fractions.) (CCSS: 6.RP.A.2) 3. Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations. (CCSS: 6.RP.A.3) a. Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios. (CCSS: 6.RP.A.3.a) b. Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed? (CCSS: 6.RP.A.3.b) c. Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means $\frac{30}{100}$ times the quantity); solve problems involving finding the whole, given a part and the percent. (CCSS: 6.RP.A.3.c) d. Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities. (CCSS: 6.RP.A.3.d)		

Reporting Category	Colorado Academic Standards Summative Assessment Framework-FINAL Math Grade 6	\% of Score Points of Total Test	Points
	4. Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y+y+y$ and $3 y$ are equivalent because they name the same number regardless of which number y stands for. (CCSS: 6.EE.A.4)		
	Grade Level Expectation: 6.EE.B. Expressions \& Equations: Reason about and solve one-variable equations and inequalities. Evidence Outcomes: 5. Describe solving an equation or inequality as a process of answering a question: Which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true. (CCSS: 6.EE.B.5) 6. Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; recognize that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (CCSS: 6.EE.B.6) 7. Solve real-world and mathematical problems by writing and solving equations of the form $x \pm p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers. (CCSS: 6.EE.B.7) 8. Write an inequality of the form $x>c, x \geq c, x<c$, or $x \leq c$ to represent a constraint or condition in a realworld or mathematical problem. Show that inequalities of the form $x>c, x \geq c, x<c$, or $x \leq c$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams. (CCSS: 6.EE.B.8)		
Subclaim B	Supporting Content	22	11
	Number and Quantity		
	Grade Level Expectation: 6.NS.B. The Number System: Compute fluently with multi-digit numbers and find common factors and multiples. Evidence Outcomes: 2. Fluently divide multi-digit numbers using the standard algorithm. (CCSS: 6.NS.B.2)		

Reporting Category	Colorado Academic Standards Summative Assessment Framework-FINAL Math Grade 6	\% of Score Points of Total Test	Points
	3. Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation. (CCSS: 6.NS.B.3) 4. Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+8$ as $4(9+2)$. (CCSS: 6.NS.B.4)		
	Data, Statistics, and Probability		
	Grade Level Expectation: 6.SP.A. Statistics \& Probability: Develop understanding of statistical variability. Evidence Outcomes: 1. Identify a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages. (CCSS: 6.SP.A.1) 2. Demonstrate that a set of data collected to answer a statistical question has a distribution that can be described by its center, spread, and overall shape. (CCSS: 6.SP.A.2) 3. Explain that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number. (CCSS: 6.SP.A.3)		
	Grade Level Expectation: 6.SP.B. Statistics \& Probability: Summarize and describe distributions. Evidence Outcomes: 4. Display numerical data in plots on a number line, including dot plots, histograms, and box plots. (CCSS: 6.SP.B.4) 5. Summarize numerical data sets in relation to their context, such as by: (CCSS: 6.SP.B.5) a. Reporting the number of observations. (CCSS: 6.SP.B.5.a) b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement. (CCSS: 6.SP.B.5.b) c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered. (CCSS: 6.SP.B.5.c) d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered. (CCSS: 6.SP.B.5.d)		

Reporting Category	Colorado Academic Standards Summative Assessment Framework-FINAL Math Grade 6	\% of Score Points of Total Test	Points
	Given an equation, present the solution steps as a logical argument that concludes with a solution. Content Scope: Knowledge and skills articulated in 6.EE.B		
	Construct, autonomously, chains of reasoning that will justify or refute propositions or conjectures. Content Scope: Knowledge and skills articulated in 6.EE. 4		
	Present solutions to multi-step problems in the form of valid chains of reasoning, using symbols such as equals signs appropriately (for example, rubrics award less than full credit for the presence of nonsense statements such as $1+4=5+7=12$, even if the final answer is correct), or identify or describe errors in solutions to multi-step problems and present corrected solutions. Content Scope: Knowledge and skills articulated in 6.RP.A, 6.EE. 9		
	Distinguish correct explanation/reasoning from that which is flawed, and - if there is a flaw in the argument present corrected reasoning. (For example, some flawed 'student' reasoning is presented and the task is to correct and improve it.) Content Scope: Knowledge and skills articulated in 5.NBT, 5.MD.C		
Subclaim D	Modeling and Application	18	9
	Solve multi-step contextual word problems with degree of difficulty appropriate to Grade 6, requiring application of knowledge and skills articulated in Sub-Claim A Evidence Statements.		
	Solve multi-step contextual problems with degree of difficulty appropriate to Grade 6, requiring application of knowledge and skills articulated in 5.NBT.B, 5.NF, 5.MD, and 5.G.A		
	Reasoned estimates: Use reasonable estimates of known quantities in a chain of reasoning that yields an estimate of an unknown quantity. Content Scope: Knowledge and skills articulated in Sub-Claim A Evidence Statements.		
All Subclaims	Calculator Usage		
	Calculator	72-73	36-37
	Non-Calculator	27-28	13-14
	Total	100	50-51

