

Colorado Measures of Academic Success

Technical Report

Math, English Language Arts (ELA), and Science

Copyright © 2023 by the Colorado Department of Education. All rights reserved.

Chapter 1: Introduction	13
1.1. Testing Requirements	13
1.2. Intended Population	13
1.3. CMAS Background	14
1.4. Purpose of CMAS	15
1.5. Assessment Development Partners	15
1.5.1. Colorado Department of Education	15
1.5.2. Colorado Educator Community	
1.5.3. Pearson	
1.5.4. Tri-Lin Integrated Services, Inc.	
1.5.5. Colorado Technical Advisory Committee	
Chapter 2: Test Design	
2.1. Colorado Academic Standards	18
2.2. Test Frameworks and Blueprints	20
2.2.1. Mathematics and ELA	
2.2.2. Science	21
2.3. Claims and Subclaims	
2.4. Performance Levels	23
2.5. Cognitive Complexity	
2.6. Test Design	25
2.7. Timing of Tests	26
Chapter 3: Item Development	27
3.1. Item Banking System	27
3.2. Item Development Plan	28
3.3. ELA Passage Development	28
3.4. Science Scenario Development	
3.5. Item Writing	29
3.6. Item Review	29
3.6.1. Internal Review	29
3.6.2. CDE Review	
3.6.3. External Content and Bias Review	30
3.7. Data Review	31
Chapter 4: Test Construction	34
4.1. Test Form Construction	34
4.2. Accommodated Test Forms	35
4.2.1. Paper	35
4.2.2. Braille	36
4.2.3. Large Print	36
Chapter 5: Test Administration	37
5.1. Manuals	37
5.2. Administration Training	37
5.3. Practice Resources	38

Table of Contents

5.4. Onsite Preparation	. 38
5.5. Accessibility Features and Accommodations	. 38
5.6. Test Security	. 39
Chapter 6: Scoring	. 41
6.1. Machine Scoring	. 41
6.2. Human Scoring	. 41
6.2.1. Operational Scoring	
6.2.2. Field Test Scoring	
6.2.3. Rangefinding	. 43
6.2.4. Backreading	
6.2.5. Calibration	
6.2.6. Validity Papers	
6.3. MRE Scoring	
6.4. Automated Scoring	
6.4.1. Quality Criteria for Evaluating Automated Scoring	
6.4.1.1. Primary Criterion	
6.4.1.2. Secondary Criterion	
6.4.2. Hierarchy of Assigned Scores for Reporting	. 47
Chapter 7: Standard Setting	. 48
Chapter 8: Reporting	. 50
8.1. Description of Scores	. 50
8.1.1. Scale Scores	. 50
8.1.2. Performance Levels	. 50
8.1.3. Percentile Ranking	
8.1.4. Percent Earned	. 50
8.2. Score Reports	. 51
8.2.1. Student Performance Reports	. 51
8.2.2. Aggregate Reports	
Chapter 9: Test Results and Analysis	. 52
9.1. Student Participation	. 52
9.2. Performance Results	. 52
9.3. Classical Item Analysis	. 54
9.4. Subclaim Correlations	. 55
Chapter 10: Calibration, Equating, and Scaling	. 58
10.1. IRT Models	. 60
10.2. Item Response Curves (IRCs) and Item Characteristic Curves (ICCs)	
10.3. Data Preparation	
10.4. Checking Model Assumptions	
10.4.1. Unidimensionality (Factor Analysis)	
10.4.2. Item Fit	
10.5. Calibration	
10.6. Equating	
10.6.1. Mathematics	
10.6.1.1. Pre-Equating Design	

10.6.1.2. Post-Equating Check	. 66
10.6.2. ELA	. 67
10.6.2.1. Consistency of Constructed-Response Scoring Check	. 67
10.6.2.2. Stability Check	. 67
10.6.2.3. Calibration and Anchor Set Evaluation	. 68
10.6.2.4. Final Anchor Sets	. 68
10.6.2.5. Equating Method	. 68
10.6.2.6. Paper Forms	. 68
10.6.3. CSLA	. 68
10.6.3.1. Stability Check	
10.6.3.2. Final Anchor Sets	. 69
10.6.3.3. Equating Method	. 69
10.6.4. Science	. 69
10.6.4.1. Consistency of Constructed-Response Scoring Check	. 69
10.6.4.2. Stability Check	. 70
10.6.4.3. Calibration and Anchor Set Evaluation	. 70
10.6.4.4. Final Anchor Sets	. 70
10.6.4.5. Equating Method	. 70
10.6.4.6. Paper Forms	. 71
10.7. Field Test Equating	. 71
10.8. Ability Estimates	
10.8.1. Mathematics, ELA, and Science	. 71
10.8.2. CSLA	. 72
10.9. Overall and Subscale Scale Scores	. 72
10.10. Item-Level IRT Statistics	. 72
10.11. IRT Curves	. 73
10.12. Comparability of Online and Paper Forms	. 73
Chapter 11: Reliability	. 75
11.1. Internal Consistency (Coefficient Alpha)	. 75
11.2. Standard Error of Measurement (SEM)	
11.3. Conditional Standard Error of Measurement (CSEM)	
11.4. Decision Consistency and Accuracy	
11.5. Inter-Rater Agreement	
Chapter 12: Validity	
12.1. Evidence Based on Test Content	
12.1.1. Test Development Process	
12.1.2. Alignment Study	
12.2. Evidence Based on Internal Structure	
12.3. Evidence Based on Relationships to Other Variables	
12.4. Evidence Based on Response Processes	
12.5. Evidence Based on the Consequences of Testing	
12.6. Fairness	
References	
Appendix A: Test Blueprints	
Appendix A. Test Dideptilits	・フム

Appendix B: Science Cognitive Complexity Framework	
Appendix C: ELA and CSLA Scoring Rubrics	
Appendix D: Sample Student Performance Reports	104
Appendix E: Student Participation by Demographic Group	110
Appendix F: Scale Score Distributions	114
Appendix G: Scale Score Distribution Graphs	146
Appendix H: Scale Score Summary Statistics by Demographic Group	155
Appendix I: Summary Statistics for Points Earned by Subclaim	166
Appendix J: Classical Item-Level Statistics	169
Appendix K: Scree Plots	187
Appendix L: Mathematics 2022 Post-Equating Check TCCs	196
Appendix M: IRT Item-Level Statistics	199
Appendix N: TCC, TIC, and CSEM Curves	210
Appendix O: Inter-Rater Agreement	235

List of Tables

Table 1.1. Schedule of Major Events	. 16
Table 2.1. Subclaims	. 22
Table 2.2. Performance Levels and Policy Claims—Mathematics and ELA	. 23
Table 2.3. Performance Levels and Policy Claims—Science	. 24
Table 2.4. Mathematics and ELA Cognitive Complexity Levels	. 24
Table 2.5. Science Cognitive Complexity Criteria	. 25
Table 2.6. Testing Times	
Table 3.1. Refresh Rates—Mathematics and ELA	
Table 3.2. Item Statistical Flagging Criteria	. 32
Table 3.3. Data Review Results	
Table 7.1. Performance Level Cut Scores	. 48
Table 7.2. ELA Reading Met Expectations Cut Score	
Table 7.3. 2023 CMAS Science Performance Indicator Cut Scores	. 49
Table 9.1. Student Participation N-Count by Form	. 52
Table 9.2. Scale Score Performance Summary	
Table 9.3. Performance Level Distribution: Percent of Students in Each Performance Level	
Table 9.4. Correlations Between Subclaims—Mathematics	
Table 9.5. Correlations Between Subclaims—ELA	
Table 9.6. Correlations Between Subclaims—CSLA	
Table 9.7. Correlations between Subclaims—Reading vs. Writing	
Table 9.8. Correlations Between Subclaims—Science	. 57
Table 10.1. Online vs. Paper Comparability Mode Effect Sizes	
Table 11.1. Coefficient Alpha by Subclaim—Mathematics	
Table 11.2. Coefficient Alpha by Subclaim-ELA	. 76
Table 11.3. Coefficient Alpha by Subclaim—CSLA	. 77
Table 11.4. Coefficient Alpha by Subclaim—Science	
Table 11.5. SEM by Subclaim—Mathematics	. 77

Table 11.6. SEM by Subclaim—ELA	78
Table 11.7. SEM by Subclaim—CSLA	
Table 11.8. SEM by Subclaim—Science	78
Table 11.9. Kappa Values	
Table 11.10. Decision Consistency and Accuracy Estimates	80
Table 11.11. Accuracy of Cut Scores	
Table 11.12. Consistency of Cut Scores	
Table 12.1. Correlations Between CMAS Scale Scores	
Table 12.2. Student Performance Over Time Table 1.1. True Plant in the state of the	
Table A.1. Test Blueprint—Mathematics Grades 3–5 Table A.2. Test Blueprint—Mathematics Grades 3–5	
Table A.2. Test Blueprint—Mathematics Grades 6–8 Table A.2. Test Blueprint—ELA Crodes 2.5	
Table A.3. Test Blueprint—ELA Grades 3–5 Table A.4. Test Blueprint—ELA Grades 6–8	
Table A.4. Test Blueprint—ELA Glades 0–8 Table A.5. Test Blueprint—Science Grade 5	
Table A.6. Test Blueprint—Science Grade 8 (MS)	
Table A.7. Test Blueprint—Science Grade 11 (HS)	
Table E.1. Student Participation N-Count Demographic Distribution—Mathematics	
Table E.2. Student Participation N-Count Demographic Distribution—ELA	
Table E.3. Student Participation N-Count Demographic Distribution—CSLA	
Table E.4. Student Participation N-Count Demographic Distribution—Science	
Table F.1. Scale Score Distribution—Mathematics Grade 3	
Table F.2. Scale Score Distribution—Mathematics Grade 4	
Table F.3. Scale Score Distribution—Mathematics Grade 5	
Table F.4. Scale Score Distribution—Mathematics Grade 6	
Table F.5. Scale Score Distribution—Mathematics Grade 7	
Table F.6. Scale Score Distribution—Mathematics Grade 8.	
Table F.7. Scale Score Distribution—ELA Grade 3	
Table F.8. Scale Score Distribution—ELA Grade 4 Table F.9. Scale Score Distribution—ELA Grade 5	
Table F.9. Scale Score Distribution—ELA Grade 5 Table F.10. Scale Score Distribution—ELA Grade 6	
Table F.10. Scale Score Distribution—ELA Grade 0 Table F.11. Scale Score Distribution—ELA Grade 7	
Table F.12. Scale Score Distribution—ELA Grade 8	
Table F.12. Scale Score Distribution End Chade Champion Table F.13. Scale Score Distribution CSLA Grade 3	
Table F.14. Scale Score Distribution—CSLA Grade 4	
Table F.15. Scale Score Distribution—Science Grade 5	
Table F.16. Scale Score Distribution—Science Grade 8	142
Table F.17. Scale Score Distribution—Science Grade 11	144
Table H.1. Performance by Subgroup—Mathematics Grade 3	155
Table H.2. Performance by Subgroup—Mathematics Grade 4	
Table H.3. Performance by Subgroup—Mathematics Grade 5	
Table H.4. Performance by Subgroup—Mathematics Grade 6	
Table H.5. Performance by Subgroup—Mathematics Grade 7 Table H.C. Performance by Subgroup—Mathematics Grade 8	
Table H.6. Performance by Subgroup—Mathematics Grade 8 Table H.7. Performance by Subgroup—ELA Grade 3	
Table H.7. Performance by Subgroup—ELA Grade 3 Table H.8. Performance by Subgroup—ELA Grade 4	
Table H.8. Performance by Subgroup—ELA Grade 4 Table H.9. Performance by Subgroup ELA Grade 5	
Table H.9. Performance by Subgroup—ELA Grade 5 Table H.10. Performance by Subgroup—ELA Grade 6	
Table 11.10. Fertormance by Subgroup-ELA Orace O	100

Table H.11. Performance by Subgroup—ELA Grade 7	161
Table H.12. Performance by Subgroup—ELA Grade 8	
Table H.13. Performance by Subgroup—CSLA Grade 3	
Table H.14. Performance by Subgroup—CSLA Grade 4	
Table H.15. Performance by Subgroup—Science Grade 5	
Table H.16. Performance by Subgroup—Science Grade 8	
Table H.17. Performance by Subgroup—Science Grade 11 Table I.1. Points Earned Summary by Subclaim—Mathematics	
Table I.2. Points Earned Summary by Subclaim—ELA	
Table I.3. Points Earned Summary by Subclaim—CSLA	
Table I.4. Points Earned Summary by Subclaim—Science	168
Table J.1. SR Item Classical Statistics—Mathematics Grade 3	
Table J.2. CR Item Classical Statistics—Mathematics Grade 3	
Table J.3. SR Item Classical Statistics—Mathematics Grade 4 Table J.4. GP Item Classical Statistics—Mathematics Grade 4	
Table J.4. CR Item Classical Statistics—Mathematics Grade 4 Table J.5. SR Item Classical Statistics—Mathematics Grade 5	
Table J.S. SK item Classical Statistics—Mathematics Grade 5	
Table J.0. ER Item Classical Statistics Mathematics Grade 6	
Table J.8. CR Item Classical Statistics—Mathematics Grade 6	
Table J.9. SR Item Classical Statistics—Mathematics Grade 7	
Table J.10. CR Item Classical Statistics—Mathematics Grade 7	
Table J.11. SR Item Classical Statistics—Mathematics Grade 8	
Table J.12. CR Item Classical Statistics—Mathematics Grade 8 Table J.13. SR Item Classical Statistics—ELA Grade 3	
Table J.15. SK field Classical Statistics—ELA Grade 3 Table J.14. CR Item Classical Statistics—ELA Grade 3	
Table J.15. SR Item Classical Statistics—ELA Grade 4	
Table J.16. CR Item Classical Statistics—ELA Grade 4	
Table J.17. SR Item Classical Statistics—ELA Grade 5	177
Table J.18. CR Item Classical Statistics—ELA Grade 5	
Table J.19. SR Item Classical Statistics—ELA Grade 6	
Table J.20. CR Item Classical Statistics—ELA Grade 6 Table J.21. SR Item Classical Statistics—ELA Grade 7	
Table J.21. SR Item Classical Statistics—ELA Grade 7	
Table J.22. CK Item Classical Statistics—ELA Grade 7	
Table J.24. CR Item Classical Statistics—ELA Grade 8	
Table J.25. SR Item Classical Statistics—CSLA Grade 3	181
Table J.26. CR Item Classical Statistics—CSLA Grade 3	
Table J.27. SR Item Classical Statistics—CSLA Grade 4	
Table J.28. CR Item Classical Statistics—CSLA Grade 4 Table J.29. SR Item Classical Statistics—Science Grade 5	
Table J.29. SK Item Classical Statistics—Science Grade 5 Table J.30. CR Item Classical Statistics—Science Grade 5	
Table J.31. SR Item Classical Statistics—Science Grade 8	
Table J.32. CR Item Classical Statistics—Science Grade 8	
Table J.33. SR Item Classical Statistics—Science Grade 11	
Table J.34. CR Item Classical Statistics—Science Grade 11	
Table M.1. Operational Item Parameter Estimates—ELA Grade 3	
Table M.2. Operational Item Parameter Estimates—ELA Grade 4	200

Table M 2 One metion al Item Demonstran Estimates ELA Crash 5	201
Table M.3. Operational Item Parameter Estimates—ELA Grade 5	201
Table M.4. Operational Item Parameter Estimates—ELA Grade 6	
Table M.5. Operational Item Parameter Estimates—ELA Grade 7	
Table M.6. Operational Item Parameter Estimates—ELA Grade 8	204
Table M.7. Operational Item Parameter Estimates—CSLA Grade 3	205
Table M.8. Operational Item Parameter Estimates—CSLA Grade 4	206
Table M.9. Operational Item Parameter Estimates—Science Grade 5	
Table M.10. Operational Item Parameter Estimates—Science Grade 8	
Table M.11. Operational Item Parameter Estimates—Science Grade 11	209
Table O.1. Operational Rater Agreement Statistics—Mathematics Grade 3	
Table O.2. Operational Rater Agreement Statistics—Mathematics Grade 4	
Table O.3. Operational Rater Agreement Statistics—Mathematics Grade 5	
Table O.4. Operational Rater Agreement Statistics—Mathematics Grade 6	
Table O.5. Operational Rater Agreement Statistics—Mathematics Grade 7	235
Table O.6. Operational Rater Agreement Statistics—Mathematics Grade 8	236
Table O.7. Field Test Rater Agreement Statistics—Mathematics Grade 3	236
Table O.8. Field Test Rater Agreement Statistics—Mathematics Grade 4	237
Table O.9. Field Test Rater Agreement Statistics—Mathematics Grade 5	
Table O.10. Field Test Rater Agreement Statistics—Mathematics Grade 6	239
Table O.11. Field Test Rater Agreement Statistics—Mathematics Grade 7	
Table O.12. Field Test Rater Agreement Statistics—Mathematics Grade 8	
Table O.13. Operational Rater Agreement Statistics—ELA Grade 3	241
Table O.14. Operational Rater Agreement Statistics—ELA Grade 4	241
Table O.15. Operational Rater Agreement Statistics—ELA Grade 5	241
Table O.16. Operational Rater Agreement Statistics—ELA Grade 6	242
Table O.17. Operational Rater Agreement Statistics—ELA Grade 7	
Table O.18. Operational Rater Agreement Statistics—ELA Grade 8	242
Table O.19. Field Test Rater Agreement Statistics—ELA Grade 3	242
Table O.20. Field Test Rater Agreement Statistics—ELA Grade 4	243
Table O.21. Field Test Rater Agreement Statistics—ELA Grade 5	243
Table O.22. Field Test Rater Agreement Statistics—ELA Grade 6	
Table O.23. Field Test Rater Agreement Statistics—ELA Grade 7	244
Table O.24. Field Test Rater Agreement Statistics—ELA Grade 8	
Table O.25. Operational Rater Agreement Statistics—CSLA Grade 3	
Table O.26. Operational Rater Agreement Statistics—CSLA Grade 4	
Table O.27. Field Test Rater Agreement Statistics—CSLA Grade 3	
Table O.28. Field Test Rater Agreement Statistics—CSLA Grade 4	
Table O.29. Operational Rater Agreement Statistics—Science Grade 5	
Table O.30. Operational Rater Agreement Statistics—Science Grade 8	
Table O.31. Operational Rater Agreement Statistics—Science Grade 11	
Table O.32. Field Test Rater Agreement Statistics—Science Grade 5	
Table O.33. Field Test Rater Agreement Statistics—Science Grade 8	
Table 0.34. Field Test Rater Agreement Statistics—Science Grade 11	

List of Figures

Figure 2.1. How to Read the Colorado Academic Standards	18
Figure 10.1. Sample 2PL Item Characteristic Curve (ICC)	61
Figure 10.2. Sample 2PL Item Response Curves (IRCs)	61
Figure 10.3. Item Response Curves (IRCs) for a 2-point Polytomous Item	62
Figure 10.4. Sample Key Check (TRIAN) Report	
Figure 10.5. Sample Adjudication Spreadsheet	
Figure G.1. Scale Score Distribution—Mathematics Grade 3	
Figure G.2. Scale Score Distribution—Mathematics Grade 4	
Figure G.3. Scale Score Distribution—Mathematics Grade 5	
Figure G.4. Scale Score Distribution—Mathematics Grade 6	
Figure G.5. Scale Score Distribution—Mathematics Grade 7	
Figure G.6. Scale Score Distribution—Mathematics Grade 8	
Figure G.7. Scale Score Distribution—ELA Grade 3	
Figure G.8. Scale Score Distribution—ELA Grade 4	
Figure G.9. Scale Score Distribution—ELA Grade 5	150
Figure G.10. Scale Score Distribution—ELA Grade 6	
Figure G.11. Scale Score Distribution—ELA Grade 7	
Figure G.12. Scale Score Distribution—ELA Grade 8	
Figure G.13. Scale Score Distribution—CSLA Grade 3	152
Figure G.14. Scale Score Distribution—CSLA Grade 4	152
Figure G.15. Scale Score Distribution—Science Grade 5	
Figure G.16. Scale Score Distribution—Science Grade 8	
Figure G.17. Scale Score Distribution—Science Grade 11	
Figure K.1. Scree Plot—Mathematics Grade 3	
Figure K.2. Scree Plot—Mathematics Grade 4	
Figure K.3. Scree Plot—Mathematics Grade 5	188
Figure K.4. Scree Plot—Mathematics Grade 6	188
Figure K.5. Scree Plot—Mathematics Grade 7	189
Figure K.6. Scree Plot—Mathematics Grade 8	
Figure K.7. Scree Plot—ELA Grade 3	
Figure K.8. Scree Plot—ELA Grade 4	
Figure K.9. Scree Plot—ELA Grade 5	
Figure K.10. Scree Plot—ELA Grade 6	
Figure K.11. Scree Plot—ELA Grade 7	
Figure K.12. Scree Plot—ELA Grade 8	
Figure K.13. Scree Plot—CSLA Grade 3	
Figure K.14. Scree Plot—CSLA Grade 4	
Figure K.15. Scree Plot—Science Grade 5	
Figure K.16. Scree Plot—Science Grade 8	
Figure K.17. Scree Plot—Science Grade 11	
Figure L.1. 2022 Post-Equating Check TCCs—Mathematics Grade 3	
Figure L.2. 2022 Post-Equating Check TCCs—Mathematics Grade 4	
Figure L.3. 2022 Post-Equating Check TCCs—Mathematics Grade 5	
Figure L.4. 2022 Post-Equating Check TCCs—Mathematics Grade 6	
Figure L.5. 2022 Post-Equating Check TCCs—Mathematics Grade 7	198

Figure L.6. 2022 Post-Equating Check TCCs—Mathematics Grade 8	198
Figure N.1. Mathematics Grade 3 TCC	
Figure N.2. Mathematics Grade 3 TIC	
Figure N.3. Mathematics Grade 3 CSEM Curve	
Figure N.4. Mathematics Grade 4 TCC	211
Figure N.5. Mathematics Grade 4 TIC	211
Figure N.6. Mathematics Grade 4 CSEM Curve	211
Figure N.7. Mathematics Grade 5 TCC	
Figure N.8. Mathematics Grade 5 TIC	212
Figure N.9. Mathematics Grade 5 CSEM Curve	
Figure N.10. Mathematics Grade 6 TCC Figure N.11. Mathematics Grade 6 TIC	213
Figure N.12. Mathematics Grade 6 CSEM Curve	
Figure N.13. Mathematics Grade 7 TCC	
Figure N.14. Mathematics Grade 7 TIC	. 214
Figure N.15. Mathematics Grade 7 CSEM Curve	214
Figure N.16. Mathematics Grade 8 TCC	215
Figure N.17. Mathematics Grade 8 TIC	
Figure N.18. Mathematics Grade 8 CSEM Curve	215
Figure N.19. ELA Grade 3 TCC	216
Figure N.20. ELA Grade 3 TIC	216
Figure N.21. ELA Grade 3 CSEM Curve	
Figure N.22. ELA Grade 4 TCC	217
Figure N.23. ELA Grade 4 TIC	
Figure N.24. ELA Grade 4 CSEM Curve	
Figure N.25. ELA Grade 5 TCC	218
Figure N.26. ELA Grade 5 TIC	
Figure N.27. ELA Grade 5 CSEM Curve	218
Figure N.28. ELA Grade 6 TCC Figure N.29. ELA Grade 6 TIC	
Figure N.29. ELA Grade 6 TIC Figure N.30. ELA Grade 6 CSEM Curve	
Figure N.30. ELA Grade 0 CSEW Curve	
Figure N.32. ELA Grade 7 TIC	
Figure N.33. ELA Grade 7 CSEM Curve	
Figure N.34. ELA Grade 8 TCC	
Figure N.35. ELA Grade 8 TIC	
Figure N.36. ELA Grade 8 CSEM Curve	
Figure N.37. CSLA Grade 3 TCC	
Figure N.38. CSLA Grade 3 TIC	222
Figure N.39. CSLA Grade 3 CSEM Curve	222
Figure N.40. CSLA Grade 4 TCC	
Figure N.41. CSLA Grade 4 TIC	
Figure N.42. CSLA Grade 4 CSEM Curve.	
Figure N.43. ELA Reading Grade 3 TCC	
Figure N.44. ELA Reading Grade 3 TIC	
Figure N.45. ELA Reading Grade 3 CSEM Curve	
Figure N.46. ELA Reading Grade 4 TCC	225

Figure N.47. ELA Reading Grade 4 TIC	225
Figure N.48. ELA Reading Grade 4 CSEM Curve	225
Figure N.49. ELA Reading Grade 5 TCC	226
Figure N.50. ELA Reading Grade 5 TIC	226
Figure N.51. ELA Reading Grade 5 CSEM Curve	226
Figure N.52. ELA Reading Grade 6 TCC	227
Figure N.53. ELA Reading Grade 6 TIC	227
Figure N.54. ELA Reading Grade 6 CSEM Curve	
Figure N.55. ELA Reading Grade 7 TCC	228
Figure N.56. ELA Reading Grade 7 TIC	228
Figure N.57. ELA Reading Grade 7 CSEM Curve	
Figure N.58. ELA Reading Grade 8 TCC	229
Figure N.59. ELA Reading Grade 8 TIC	229
Figure N.60. ELA Reading Grade 8 CSEM Curve	229
Figure N.61. CSLA Reading Grade 3 TCC	
Figure N.62. CSLA Reading Grade 3 TIC	230
Figure N.63. CSLA Reading Grade 3 CSEM Curve	
Figure N.64. CSLA Reading Grade 4 TCC	
Figure N.65. CSLA Reading Grade 4 TIC	231
Figure N.66. CSLA Reading Grade 4 CSEM Curve	
Figure N.67. Science Grade 5 TCC	232
Figure N.68. Science Grade 5 TIC	232
Figure N.69. Science Grade 5 CSEM	
Figure N.70. Science Grade 8 TCC	233
Figure N.71. Science Grade 8 TIC	233
Figure N.72. Science Grade 8 CSEM	
Figure N.73. Science Grade 11 TCC	
Figure N.74. Science Grade 11 TIC	
Figure N.75. Science Grade 11 CSEM	

Chapter 1: Introduction

The purpose of this technical report is to inform users and other interested parties about the development, content, administration, and technical characteristics of the Spring 2023 Colorado Measures of Academic Success (CMAS) assessments for mathematics and English language arts (ELA) in Grades 3–8; for science in Grades 5, 8, and 11; and for the Colorado Spanish Language Arts (CSLA) assessment in Grades 3 and 4. The report includes an overview and summary of the components of the program, including information regarding the planning and administration of the assessments and details regarding item development, test construction, administration procedures, scoring, reporting, reliability, and validity, as well as a statistical summary of the Spring 2023 operational and field test items.

1.1. Testing Requirements

All public schools in Colorado are required by state law to administer a standards-based summative assessment each year in specified content areas and grade levels. Every student, regardless of ability or language background, must be provided the opportunity to demonstrate their content knowledge through the state assessments. The CMAS assessments in mathematics, ELA, science, and social studies are Colorado's end-of-year standards-based assessments designed to measure students' achievement of the Colorado Academic Standards (CAS).

As a requirement of Colorado School Law C.R.S. §22-7-1006.3 (4) (II)(b), students with Spanish as their home language in Grades 3 and 4 who meet established eligibility criteria may take the CSLA forms of the ELA assessment. The CSLA forms serve as accommodated versions of the CMAS ELA assessments and are parallel and comparable to ELA in test design, scoring, and reporting.

Colorado legislation (C.R.S. §22-7-1006.3 (1) (d)) also requires that a paper-based version be available for all online assessments that may be used by local educational providers for their students. The comparable paper-based forms may also be administered to students with disabilities and multilingual learner (ML) students as appropriate. Multilingual learners for assessment purposes are students with a home language other than English who are designated as not English proficient or limited English proficient (NEP/LEP) by an English language proficiency assessment or screener.

In 2015, Colorado passed legislation (C.R.S. §22-7-1013 (8) (a-c)) that allows for parents/guardians to excuse their child(ren) from testing.

1.2. Intended Population

The CMAS assessments are intended to be taken by all students enrolled in public schools, except for some students with the most significant cognitive disabilities who take the Colorado Alternate (CoAlt) assessment as determined by the student's Individualized Education Plan (IEP) team. ML students in their first year in the U.S. are exempt from the ELA assessment. However, ML students in Grades 3 and 4 designated as NEP whose native language is Spanish and who have received language arts instruction in Spanish during the current school year are required to take the CSLA assessment. Students with disabilities and ML students may take the CMAS assessments with or without accommodations that do not change the construct of the assessment. Accommodations are determined based on classroom experience and educational team decisions.

1.3. CMAS Background

The CMAS Science assessments were first administered in 2013–2014, the CMAS Mathematics and ELA assessments were first administered in 2014–2015, and the CSLA assessments were first administered in 2015-2016. Colorado developed the CMAS Mathematics and ELA assessments in collaboration with the Partnership for Assessment of Readiness for College and Careers (PARCC) consortium, with Pearson taking over as the testing contractor for mathematics and ELA in 2017–2018.¹ Pearson has been the testing contractor for the CMAS Science and Social Studies assessments and the CSLA assessments since their inception.

In 2017, the Colorado State Board of Education provided direction to the Colorado Department of Education (CDE) to decrease testing time. CDE began exploring the use of abbreviated versions of the prior years' test blueprints with the goal of decreasing testing time while retaining comparability to the CMAS Mathematics and ELA/CSLA assessments previously administered in Colorado to maintain longitudinal trend data. Test forms based on the abbreviated blueprints were developed in Fall 2017 and administered beginning in Spring 2018.

In 2021, Colorado received a partial waiver of the federal assessment requirements from the U.S. Department of Education (USED) due to COVID-19 conditions in Colorado. The number of tests students were required to take was reduced, with alternating grades for mathematics and ELA. Students were required to take one test in either mathematics or ELA, depending on their grade, although parents/guardians could choose to have their children take both tests. With the exception of students with a parent/guardian excusal, students in Grades 4, 6, and 8 were required to take the mathematics assessments; students in Grades 3, 5, and 7 were required to take the ELA assessments; and students in Grade 8 also took the science assessment. The Grade 5 and high school science and Grades 4 and 7 social studies assessments were not administered.

In 2022, newly revised standards were implemented for mathematics, ELA, and science. In 2008, Colorado passed Senate Bill 212 (also known as CAP4K) that required the State Board of Education to adopt content standards that prepare students for the 21st century workforce and for active citizenship upon receiving a high school diploma. It also required a revision to the CAS by July 1, 2018, and every six years thereafter. As such, the 2009/2010 CAS were reviewed and revised, resulting in the 2020 CAS. While minimal changes were made to the mathematics and ELA standards, the science standards underwent a substantial update to keep up with the shift to the Next Generation Science Standards (NGSS; NGSS Lead States, 2013).

Full implementation of the new three-dimensional science standards took place in 2021–2022. The new CMAS Science test was administered to all tested students for the first time in Spring 2022, which made it possible to test enough new content to allow for a robust item bank and to obtain a sufficient sample of students to conduct field test analyses. Standard setting was conducted in Fall 2022 so that full results with scale scores and proficiency levels could be reported for the Spring 2023 administration. While the Spring 2022 CMAS Science assessment reported percentile ranks only, the Spring 2023 science assessment reported scale scores and performance levels.

¹ For information on the background of the consortium and the development and administration of the assessments, see prior years' technical reports at <u>https://www.cde.state.co.us/assessment/cmas_coalt_techreport</u>.

Regular testing procedures resumed in Spring 2022 for mathematics and ELA/CSLA. Social studies was not administered in Spring 2022 or Spring 2023.

1.4. Purpose of CMAS

CMAS assessments were designed to be used for a variety of purposes, including informing parents/guardians and educators about individual student achievement of the grade-level CAS and allowing comparisons to other students across the state. Results are intended to provide one measure of a student's academic progress relative to the CAS. Results should be taken into consideration alongside other achievement information available locally. Results are also used as a piece of information in the evaluation of educator, school, and district performance. State assessment data typically help inform the state's school and district accountability system, including assigning performance ratings to schools and districts. State assessment results are also typically a component of educator evaluation. CMAS is a source of data that

- may be used as a prompt for further investigation at the student, classroom, school, and district levels;
- supports districts/schools in reviewing and developing goals for the performance of their students, including subgroups;
- may indicate that a review of programs, curricula, materials, and/or scope and sequence may be appropriate; and
- may inform the evaluation of district/school approaches.

Assessment results also support a range of data-driven stakeholder conversations, activities, and decisions such as school selection, program evaluation, investigative research, and policy/legislation formation and review. For example, educators can use the test scores to plan for further instruction and curriculum development and to report progress to parents/guardians. The results can also be used as one factor in making administrative decisions about program effectiveness, teacher effectiveness, class grouping, and needs assessment. CMAS results can also be used for research purposes and for informing community and organization efforts.

1.5. Assessment Development Partners

Activities specific to the CMAS assessments were conducted collaboratively by CDE, the Colorado educator community, and Pearson, the assessment contractor. Input and advice were provided by the Colorado Technical Advisory Committee (TAC).

1.5.1. Colorado Department of Education

As the administrative arm of the State Board of Education, CDE is responsible for implementing state and federal education laws. CDE's Assessment Unit works closely with Colorado school districts, educators, community stakeholders, and test development partners to develop and administer the state assessments. CDE focuses on creating assessments that serve students, schools, districts, and the community while complying with state and federal legal requirements. CDE also works closely with Pearson on each facet of the assessment, with CDE serving as the ultimate approver of services and products provided.

1.5.2. Colorado Educator Community

Educator participation in the CMAS development process is critical to ensuring that the assessments are aligned to the CAS, are appropriate for Colorado students at the assessed grade level, and are free from potential bias and sensitivity issues. Throughout the test development process, educators participate in the following development activities, as shown in Table 1.1:

- Item writing: After receiving item writing assignments based on the CAS, educators create assessment items. Items that successfully move through the entire item development process will eventually appear on the operational assessments.
- Content and bias review: Educators review items to ensure content alignment and identify potential bias and sensitivity concerns before items are field tested.
- Rangefinding: Educators review student responses to field tested constructed-response items and define the score point ranges for the scoring rubrics that are used to score student responses.
- Data review: Before field tested items are included on operational assessments, educators review items with statistical parameters outside of normal ranges to determine if the item is acceptable for inclusion in the operational item bank.
- Standard setting: Colorado educators participated in the CMAS Science standard setting in September 2022 to recommend cut scores for the new three-dimensional science assessment aligned to the 2020 CAS.

Event	Date(s)
ELA Passage Reviews	January 5–11, 2022
-	January 14–21, 2022
	February 3–9, 2022
	February 21–25, 2022
	March 8-14, 2022
IWW Training (ELA)	February 16, 2022
IWW Trainings (Math)	February 17-18, 2022
	March 9, 2022
IWW Training (Science)	March 21–24, 2022
Sim Storyboard Review (Science)	March 1, 2022
Content and Bias Review (Science)	Aug 2–5, 2022
Content and Bias Review (Math)	July 19-20, 2022
Content and Bias Review (ELA)	July 25–29, 2022
CMAS Science Standard Setting	September 27–28, 2022
Braille Review (Math & Science)	December 8–9, 2022
DAC Administration Training	November 9–15, 2022
Spring 2023 Administration Window	April 10–28, 2023
Rangefinding	June 5–8, 2023
Data Review (ELA)	August 17-18, 2023
Data Review (Science)	August 4, 2023
Data Review (CSLA)	September 13, 2023
Data Review (Math)	September 22, 2023
CMAS Reports Available	July 10, 2023

Table 1.1. Schedule of Major Events

Note. The ELA passage review included five windows where educators reviewed batches of passages independently.

1.5.3. Pearson

As the primary contractor responsible for the end-to-end assessment cycle services and products, Pearson works closely with CDE throughout the CMAS and CoAlt Science assessment development and administration processes. This includes item and test development, forms creation, enrollment, packaging and distribution, test delivery, scoring, customer service, standard setting, scoring, score reporting, and psychometric services.

1.5.4. Tri-Lin Integrated Services, Inc.

As a subcontractor to Pearson, Tri-Lin is responsible for CSLA content and test development, including passage development, item development, and test form construction.

1.5.5. Colorado Technical Advisory Committee

The Colorado TAC is comprised of psychometric, assessment, and special populations experts tasked with providing high-level consulting and expert advice regarding validity and reliability issues. Topics for which the TAC has provided input include the blueprint design, scaling and equating, mode comparability, scoring, reporting, alignment study feedback, peer review, and standard setting. The TAC included the following members during the 2023 assessment cycle:

- Dr. Elliot Asp, Senior Partner, The Colorado Education Initiative
- Dr. Jonathan Dings, Executive Director of Student Assessment and Program Evaluation, Boulder Valley School District
- Dr. Michael Kolen, Psychometric Consultant
- Dr. Suzanne Lane, Professor, University of Pittsburgh
- Dr. Martha Thurlow, Director, National Center on Educational Outcomes

Chapter 2: Test Design

2.1. Colorado Academic Standards

The CMAS assessments are standards-based tests designed to measure what students should know and be able to demonstrate at the end of each grade or grade band based on the 2020 CAS located at the following links for each content area. The CAS for all content areas include the components in Figure 2.1.

- 2020 Mathematics Standards: http://www.cde.state.co.us/comath/statestandards
- 2020 Reading, Writing, and Communicating Standards: http://www.cde.state.co.us/coreadingwriting/statestandards
- 2020 Science Standards: <u>https://www.cde.state.co.us/coscience/statestandards</u>

Figure 2.1. How to Read the Colorado Academic Standards

Prepared Graduates:	
The PG Statements represent concepts and skills that system must master to ensure their success in postse	
Grade Level Expectation:	
The GLEs are an articulation of the concepts and skills master to ensure their progress toward becoming a p	s for a grade, grade band, or range that students must prepared graduate.
Evidence Outcomes	Academic Context and Connections
The EOs describe the evidence that demonstrates that a student is meeting the GLE at a mastery level.	The ACCs provide context for interpreting, connecting, and applying the content and skills of the GLE. This includes the <u>Colorado Essential Skills</u> , which are the critical skills needed to prepare students to successfully enter the workforce or educational opportunities beyond high school embedded within statute (C.R.S. 22-7-1005) and identified by the Colorado Workforce Development Committee. The ACCs contain information unique to each content area. Content-specific elements of the ACCs are described below.
Grade Level, Standard Category	2020 Colorado Academic Standards GLE Code

The 2020 CAS for Mathematics and ELA had minimal changes compared to the previous 2009/2010 standards, whereas the 2020 CAS for Science underwent significant changes to be based on the NGSS.² The NGSS were guided by *A Framework for K–12 Science Education* (National Research Council, 2012) and designed to reflect more recent research and thinking in science education. The 2020 CAS for Science represent what all Colorado students should know and be able to do in science based on their PreK–Grade 12 science education.

The new science content standards are considered three-dimensional in that they incorporate Disciplinary Core Ideas (DCIs), Science and Engineering Practices (SEPs), and Crosscutting Concepts (CCCs). The DCIs encompass the content that occurs at each grade and provides the background knowledge for students to develop sense-making around phenomena in the three standards of Physical Science, Life Science, and Earth and Space Science. The DCIs are as follows³:

- Physical Science: Students know and understand common properties, forms, and changes in matter and energy.
 - PS1: Matter and its interactions
 - PS2: Motion and stability: Forces and interactions
 - PS3: Energy
 - PS4: Waves and their applications in technologies for information transfer
- Life Science: Students know and understand the characteristics and structure of living things, the processes of life, and how living things interact with each other and their environment.
 - LS1: From molecules to organisms: Structures and processes
 - LS2: Ecosystems: Interactions, energy, and dynamics
 - LS3: Heredity: Inheritance and variation of traits
 - LS4: Biological evolution: Unity and diversity
- Earth and Space Science: Students know and understand the processes and interactions of Earth's systems and the structure and dynamics of Earth and other objects in space.
 - ESS1: Earth's place in the universe
 - ESS2: Earth's systems
 - ESS3: Earth and human activity

The SEPs describe how scientists investigate and build models and theories of the natural world or how engineers design and build systems. They reflect science and engineering as they are practiced and experienced. There are eight SEPs:

- 1. Asking questions (for science) and defining problems (for engineering)
- 2. Developing and using models
- 3. Planning and carrying out investigations

²A summary of all the changes made to the standards are available on the CDE website for mathematics at <u>https://www.cde.state.co.us/comath/2020cas-ma-changes</u>, for ELA at <u>https://www.cde.state.co.us/coreadingwriting/2020cas-rw-changes</u>, and for science at <u>https://www.cde.state.co.us/coscience/2020cas-sc-changes</u>.

³Adaptation of the NGSS occurred by not adopting the fourth standard of Engineering, Technology, and Applications of Science (although engineering is still incorporated within the SEPs).

- 4. Analyzing and interpreting data
- 5. Using mathematics and computational thinking
- 6. Constructing explanations (for science) and designing solutions (for engineering)
- 7. Engaging in argument from evidence
- 8. Obtaining, evaluating, and communicating information

CCCs cross boundaries between science disciplines and provide an organizational framework to connect knowledge from various disciplines into a coherent and scientifically based view of the world. They build bridges between science and other disciplines and connect the DCIs and SEPs throughout the fields of science and engineering. There are seven CCCs:

- 1. Patterns
- 2. Cause and Effect
- 3. Scale, Proportion, and Quantity
- 4. Systems and System Models
- 5. Energy and Matter
- 6. Structure and Function
- 7. Stability and Change

The CMAS Science assessment is given in Grades 5, 8, and 11. Consistent with the standards, the Grade 5 assessment assesses the grade-level standards. Because the science standards are articulated by grade band at the middle school and high school levels rather than grade levels, the Grade 8 assessment assesses all middle school science standards, and the Grade 11 assessment assesses all high school science standards.

2.2. Test Frameworks and Blueprints

Concepts and skills identified in the CAS are the basis for the CMAS assessments. The CMAS frameworks list the percent representation and number of score points for each subclaim and standard area that appear on the assessments and specify the Evidence Outcomes (EOs) from the CAS that are included on the assessments. The mathematics and ELA frameworks continue to use Evidence Statements (ES) developed in collaboration with PARCC that describe the knowledge and skills an assessment item/task elicits from students. Together, the CMAS frameworks and ES provide the foundation for ensuring that the full range and depth of the standards are assessed. CDE incorporated feedback from content experts and educators throughout the state to create the final versions of the frameworks. The frameworks and ES are both available on the CDE website at https://www.cde.state.co.us/assessment/cmas_testdesign.

The test blueprints take the frameworks a step further by specifying the number of test items by Prepared Graduate (PG) Statement, Grade-Level Expectation (GLE), EO, item type, and cognitive complexity. The specificity of the test blueprints ensures that the assessments cover the breadth of the content indicated by the CAS within the associated grade or grade band. Appendix A presents the high-level test blueprints that summarize the percentage of score points on each test for each claim and subclaim on each assessment as shown in the frameworks. The most recent versions of the mathematics and ELA blueprints were developed in 2017–2018, while new test blueprints were created for CMAS Science in 2021–2022.

2.2.1. Mathematics and ELA

In 2017, the State Board of Education provided direction to CDE to decrease testing time. CDE began exploring the use of abbreviated versions of the prior years' test blueprints with the goal of decreasing testing time while retaining comparability to the CMAS Mathematics and ELA assessments previously administered in Colorado to maintain longitudinal trend data. Therefore, with the intent to reduce testing time, the 2018 blueprints were a proportionate abbreviation of the 2017 forms. CDE and Pearson collaborated in designing the CMAS subject- and grade-specific blueprints for mathematics and ELA in 2017–2018. The blueprints were designed to measure the same constructs as, and provide content comparability to, the previous year's assessments. Eligible content continued to reflect the CAS and ES used in prior years.⁴

2.2.2. Science

Pearson worked with Achieve, a nonprofit education organization that leads the effort to help states make college and career readiness a priority for all students, during the initial development of the new science assessment. Achieve provided background on how other states were approaching the new three-dimensional science standards and assessments and advice on how to proceed with cognitive complexity, blueprints, and reporting. With guidance from Achieve, Pearson, CDE, and Colorado educators collaborated in designing the science blueprints in a workshop held from November 6–7, 2019, in Denver. An effort was made to involve educators who were from areas representative of the entire state of Colorado (in terms of geographic location, gender, and race) and familiar with the 2020 CAS, related three-dimensional science instruction, and the assessment interaction and demonstration of achievement of the CAS of different groups of students, including students with disabilities and ML students. The blueprints were reviewed on October 14, 2021, by the TAC.

Results from the Spring 2022 test administration showed that items at the end of the test units were often left unanswered on the Grade 11 CMAS Science assessment, indicating that high school students had difficulty finishing the test in the time given. Therefore, after review by CDE and Pearson psychometrics, a proportional reduction was made to the Grade 11 blueprint to prevent speededness. The proposed blueprint reduction and test timing data was reviewed by the TAC on August 30, 2022. Grades 5 and 8 did not show a similar concern with speededness, so the length of these tests was not changed.

2.3. Claims and Subclaims

Student performance on the CMAS assessments is reported at the overall content area level as a scale score and performance level. Their performance is broken down even further at the claim and subclaim levels. The mathematics subclaims provide information on a student's achievement on grade-level math skills and concepts, as well as reasoning and modeling based on both grade-level and securely held knowledge of the skills and concepts from the previous grade level. The Reading and Writing claims for ELA provide information on a student's achievement in reading and comprehending a range of sufficiently complex texts independently. The subclaims are intended to provide more granular information about student demonstration of the knowledge and skills within the content area as reflected in the CAS.

⁴ For more information about the transition and abbreviated assessments, see the 2017–2018 CMAS Mathematics and ELA technical report on the CDE website at <u>https://www.cde.state.co.us/assessment/cmas_coalt_techreport</u>.

Table 2.1 presents the content reflected in each subclaim by content area. The mathematics score is a composite of the four subclaims (Major Content, Supporting Content, Mathematical Reasoning, and Modeling and Application). The Reading score is a composite of the three reading subclaims (Reading: Literary Text, Reading: Informational Text, and Reading: Vocabulary, and the Written Expression subclaim that measures reading), and the Writing claim is a composite of the two writing subclaims (Writing: Written Expression and Writing: Knowledge and Use of Language Conventions). The science score is a composite of the three standards (Physical, Life, and Earth and Space Science), as well as an SEP score.

Content Area	Subclaim	Description		
Mathematics	Subclaim A: Major Content	Students solve problems involving the Major Content of the grade level with connections to the Standards for Mathematical Practice.		
	Subclaim B: Additional & Supporting Content	Students solve problems involving the Additional and Supporting Content of the grade level with connections to the Standards for Mathematical Practice.		
	Subclaim C: Expressing Mathematical Reasoning	In connection with content, the student expresses grade/course- level appropriate mathematical reasoning by constructing viable arguments, critiquing the reasoning of others and/or attending to precision when making mathematical statements.		
	Subclaim D: Modeling & Application	In connection with content, the student solves real-world problems with a degree of difficulty appropriate to the grade/course by applying knowledge and skills articulated in the standards for the current grade/course (or for more complex problems, knowledge and skills articulated in the standards for previous grades/courses), engaging particularly in the Modeling practice, and where helpful making sense of problems and persevering to solve them, reasoning abstractly and quantitatively, using appropriate tools strategically, looking for the making use of structure, and/or looking for and expressing regularity in repeated reasoning.		
ELA	Reading: Literary Text	Students read and analyze fiction, drama, and poetry.		
	Reading: Informational Text	Students read and analyze nonfiction, history, science, and the arts		
	Reading: Vocabulary	Students use context to determine what words and phrases mean.		
	Writing: Written Expression	Students compose well-developed writing using details from what they have read.		
	Writing: Knowledge and Use of Language Conventions	Students demonstrate knowledge of conventions and other important elements of language.		
Science	Physical Science	Students know and understand common properties, forms, and changes in matter and energy.		
	Life Science	Students know and understand the characteristics and structure of living things, the processes of life, and how living things interact with each other and their environment.		
	Earth and Space Science	Students know and understand the processes and interactions of Earth's systems and the structure and dynamics of Earth and other objects in space.		
	Science and Engineering Practices (SEPs)	The SEPs describe how scientists investigate and build models and theories of the natural world or how engineers design and build systems. They reflect science and engineering as they are practiced and experienced.		

Table 2.1. Subclaims

2.4. Performance Levels

Student performance on the CMAS Mathematics and ELA assessments is categorized into five performance levels (*Did Not Yet Meet Expectations, Partially Met Expectations, Approached Expectations, Met Expectations*, and *Exceeded Expectations*), whereas student performance on CMAS Science is categorized into four performance levels (*Partially Met Expectations, Approached Expectations, Met Expectations, Met Expectations, and Exceeded Expectations*). The performance levels are based on the overall scale score, and cut scores divide the score scale for a grade and content area into the performance levels (see Chapter 7 for more information on the cut scores). Students in the *Met Expectations* and *Exceeded Expectations* levels are considered on track to being college and career ready.

The performance levels are accompanied by performance level descriptors (PLDs) that articulate what a student should know and be able to do in a particular performance level (e.g., the set of statements describing what it means for a Grade 8 student to reach *Met Expectations* in mathematics). The CMAS assessments use two types of PLDs: (1) policy PLDs (also known as policy claims) that provide a general idea of what is expected of a student at each level regardless of their grade level, as shown in Table 2.2 and Table 2.3, and (2) grade-level PLDs that provide detailed descriptions of performance levels by grade level and content area, available online at <u>https://www.cde.state.co.us/assessment/cmas_plds</u> and included on the Individual Student Performance Report and in the *CMAS and CoAlt Interpretive Guide to Assessment Reports*.

Performance Level	Did Not Yet Meet Expectations	Partially Met Expectations	Approached Expectations	Met Expectations	Exceeded Expectations
Policy Claim	Students who do not yet meet academic expectations for the concepts, skills, and practices embodied by the Colorado Academic Standards assessed at their grade level. They will <i>need extensive</i> <i>academic support</i> to engage successfully in further studies in this content area.	Students who demonstrate a limited command of the concepts, skills, and practices embodied by the Colorado Academic Standards assessed at their grade level. They will <i>need</i> <i>additional academic</i> <i>support</i> to engage successfully in further studies in this content area.	Students who demonstrate a moderate command of the concepts, skills, and practices embodied by the Colorado Academic Standards assessed at their grade level. They will <i>likely</i> <i>need additional</i> <i>academic support</i> to engage successfully in further studies in this content area.	Students who demonstrate a strong command of the concepts, skills, and practices embodied by the Colorado Academic Standards assessed at their grade level. They are <i>academically</i> <i>prepared</i> to engage successfully in further studies in this content area.	Students who demonstrate a distinguished command of the concepts, skills, and practices embodied by the Colorado Academic Standards assessed at their grade level. They are <i>academically</i> <i>well prepared</i> to engage successfully in further studies in this content area.
Scale Score	650–699	700–724	725–749	750-varies*	varies*-850

Table 2.2. Performance Levels and Policy Claims—Mathematics and ELA

*Varies by grade and content area

Performance	Partially Met	Approached	Met Expectations	Exceeded
Level	Expectations	Expectations		Expectations
Policy Claim	Students who	Students who	Students who	Students who
	demonstrate a	demonstrate a	demonstrate a	demonstrate a
	limited command of	moderate command	strong command of	distinguished
	the concepts, skills,	of the concepts,	the concepts, skills,	command of the
	and practices	skills, and practices	and practices	concepts, skills, and
	embodied by the	embodied by the	embodied by the	practices embodied
	Colorado Academic	Colorado Academic	Colorado Academic	by the Colorado
	Standards assessed	Standards assessed	Standards assessed	Academic Standards
	at their grade level.	at their grade level.	at their grade level.	assessed at their
	They will <i>need</i>	They will <i>likely</i>	They are	grade level. They
	<i>additional academic</i>	<i>need additional</i>	<i>academically</i>	are <i>academically</i>
	<i>support</i> to engage	<i>academic support</i> to	<i>prepared</i> to engage	<i>well prepared</i> to
	successfully in	engage successfully	successfully in	engage successfully
	further studies in	in further studies in	further studies in	in further studies in
	this content area.	this content area.	this content area.	this content area.
Scale Score	650–724	725–749	750-varies*	varies*-850

Table 2.3. Performance Levels and Policy Claims—Science

*Varies by grade

2.5. Cognitive Complexity

All mathematics and ELA items are tagged with a cognitive complexity level of high, moderate/medium, or low, as described in Table 2.4.

Content Area	High	Moderate/Medium	Low
Mathematics	 Significant shift from previous content Open ended, sophisticated reasoning, critiquing, modeling Single/multi-part that requires more evidence from the student 	 Moderate shift into new content Moderately scaffolded, some choice in approach Single/multi-part, multistep, moderate reading load 	 Low shift from previous content Very scaffolded, rote, recall, recognize Single part, one step with low reading load
ELA	Items require synthesis of ideas and details across multiple texts or ideas (can be single passage). For example, items may require students to construct the main idea or theme that is common across multiple texts, especially multiple texts that are not closely related in theme and/or genre.	Items require analysis of ideas and details across multiple sections in a single text . It requires more close analytic reading than low complexity items. For example, identifying the main idea or theme of a text may require inferring the main or theme or integrating ideas and details from several locations in the text.	Items require students to identify a single idea or detail in a text (e.g., identifying a term or phrase using context). It requires students to recall, observe, question, or represent facts or simple skills or abilities.

Table 2.4. Mathematics and ELA Cognitive Complexity Levels

Science transitioned away from Depth of Knowledge (DOK) in 2021–2022 with the adoption of the new science standards. From Achieve:

As states and districts develop new assessment systems, they need support for developing assessments that balance the vision and integrity of multi-dimensional standards with ensuring that they are sensitive to varying levels of student performance. This... (requires a) ...new approach to capturing and communicating the complexity of summative assessment items and tasks designed for three dimensional standards that can be used to ensure that all learners can make their thinking and abilities visible without compromising the rigor and expectations of the standards (Achieve, 2019, p. 1).

The CMAS Science assessment now uses a cognitive complexity framework that examines items via three criteria, as summarized in Table 2.5 and presented in Appendix B. Phenomenon in the stimulus material is examined separately for its own cognitive complexity.

Criterion	Description		
Item Dimensionality	 Item alignment to one, two, or three dimensions: Content of EO (Disciplinary Core Idea DCI) Science and Engineering Practice (SEP) of EO Cross Cutting Concept (CCC) of EO Items aligned to a single dimension only are <u>not</u> acceptable for CMAS Science. 		
Scaffolding/Support	The more guidance and structure the item provides the student, the lower the cognitive load required. The matrix categorizes scaffolding/support into three levels: heavy, moderate, and minimal. Heavy refers to a specific, step-by-step process is given, and the student merely needs to follow that process to supply the answer. Moderate and minimal provide increasing degrees of freedom to make choices on the part of the student and require an increasing degree of initiative to make those choices.		
Sensemaking	Fundamental to the approach of three-dimensional standards is student use of the dimensions to make sense of scientific phenomena. Some degree of sensemaking is required for all CMAS Science items. A sensemaking situation is one in which students (1) are provided material without obvious ties/connections to content (e.g., language of the standard) and (2) use their knowledge of the standard to explain what they see in the material.		

Table 2.5. Science Cognitive Complexity Criteria

2.6. Test Design

CMAS Mathematics and Science contain selected-response (SR), technology-enhanced (TE), and constructed-response (CR) items. Mathematics also contains fill-in-the-blank (FIB) items. The CMAS ELA/CSLA assessments are passage-based with a combination of literary and informational passages and contain SR, TE, and prose constructed-response (PCR) items. Multiple passages may be used to respond to some items.

For the ELA PCRs, students receive a prompt, respond to reading items, and write an extended response. It is then scored on a multi-trait rubric, as provided in Appendix C and on the CDE website at <u>https://www.cde.state.co.us/assessment/cmas_testdesign</u>. The ELA PCRs include three task types: literary analysis, research simulation, and narrative writing. Because it is administered on paper, CSLA forms contain SR, paper-based TE, and PCR items. The CSLA paper-based TE items are developed to have similar item formats and scoring rules to the paper-based versions of TE items developed for CMAS ELA.

All mathematics items are aligned to both an ES and an EO. The ES are grouped into three types to ensure that the full range and depth of the standards are assessed:

- Type I items:
 - Assess a specific EO, a specific part of an EO, or multiple EOs
 - Subclaims A and B
 - 1- or 2-point items (Grades 3–8) and 4-point items (Grades 6–8)
 - SR, TE, and FIB items
 - Calculator (Grades 6–8) and non-calculator (Grades 3–8)
- Type II items (reasoning):
 - Assess a specific type of mathematical reasoning and a specific scope in the EOs to reason about
 - Subclaim C
 - 3- or 4-point items
 - SR, TE, FIB, and CR parts; all items have at least one CR part
 - Calculator (Grades 6–8) and non-calculator (Grades 3–5)
- Type III items (modeling):
 - Assess a specific type of mathematical modeling and a specific scope in the EOs to model about
 - Subclaim D
 - 3- or 6-point items
 - SR, TE, FIB, and CR parts; all items have at least one CR part
 - Calculator (Grades 6–8), non-calculator (Grades 3–5)

The CMAS Science assessment is divided into item sets that present phenomenon-based scenarios as either interactive science simulations or static stimuli, followed by associated standalone items or clusters of items related to the simulation or scenario. A phenomenon is an observable event that students can use the three dimensions (DCI, SEP, and CCC) to explain or make sense of. Separate standalone items are also included that are not associated with a stimulus to target a small number of CAS not represented in the scenarios. The items are either 1-point SR, 1-point TE, or 2-point CR item types.

2.7. Timing of Tests

Each assessment was composed of three units with field test items embedded to allow the assessments to be administered in a reasonable timeframe, as shown in Table 2.6.

Grades	Mathematics	ELA	Science
3–5	Units 1–3: 65 minutes	Units 1–3: 90 minutes	Units 1–3: 80 minutes
	Total time: 195 minutes	Total time: 270 minutes	Total time: 240 minutes
6–8	Units 1–3: 65 minutes	Units 1–3: 110 minutes	Units 1–3: 80 minutes
	Total time: 195 minutes	Total time: 330 minutes	Total time: 240 minutes
High School	N/A	N/A	Units 1–3: 50 minutes Total time: 150 minutes

Table 2.6. Testing Times

Chapter 3: Item Development

The CMAS item development process results in a diverse bank of items that align to the CAS. All items are developed with the intention of being administered on multiple testing platforms, including online, online-accommodated, and paper-based assessments. The item writing process is a tiered, inter-related process that began with the development of the test blueprint for each grade level within each content area, followed by creating the item development plan (IDP) used to forecast the targeted number of items and associated stimuli across ESs or EOs needed to create a robust item bank. Once written, all newly developed items go through multiple rounds of review, including contractor, CDE, and Colorado educator content, bias, and data reviews.

As part of the test construction process, a selection of the proposed set of operational items are refreshed, as illustrated in Table 3.1. Therefore, a portion of the operational items have been used operationally on a previous CMAS form, while the remaining items are refreshed using Colorado-developed field test items. All items were reviewed by Colorado educators. (Please note that the Spring 2023 CMAS Grade 11 Science assessment included a set of core items held constant from 2022 to 2023 with a proportional reduction in length of the form.)

Content Area	Item Type	Refresh Rate Minimum Targets	Refresh Rate Maximums
Mathematics	Type I: 1-point	25%	50%
	Type I: 2- and 4-point	40%	60%
	Type II	33%	67%
	Type III	50%	50%
ELA	Selected Response	50%	-
	Short Constructed Response	50%	_
	Extended Constructed Response	50%	-
	Passage Sets	50%	_
Science	Regular Cluster	33%	-
	Mini cluster	50%	_
	Overall items	33%	66%

3.1. Item Banking System

Pearson's proprietary software, ABBI (Assessment Banking and Building solutions for Interoperable assessments), is used to support the test development process from initial content authoring through the review cycles. ABBI is the authoritative source for all content, data, and functionality for all CMAS system components. It serves as the repository where the item bank is housed, item revisions are catalogued, and items and item metadata are uploaded and revised by assessment specialists. Items can be moved into various statuses, each representing a step in the item development process. The items and associated stimuli are tracked, and revisions are recorded from creation through retirement in a secure environment.

Custom development reports can be generated out of ABBI, which allows users to generate Excel reports that capture metadata (e.g., unique item number, ES, task type, cognitive complexity, associated stimulus, item status, item statistics, and comments) useful for analyzing the item bank. ABBI is the source of reference for how and when changes to the item and the metadata have been implemented.

3.2. Item Development Plan

An IDP for each content area and grade is created at the beginning of each item development cycle to determine the number of items, passages, and science cluster stimuli needed to construct the assessments based on the blueprint requirements, with development targets that address any task model, passage type, ES, EO, item/task type, and cognitive complexity shortages. To accomplish this, the item bank is analyzed, and the ES, EO, task type, and cognitive complexity gaps are identified so a variety of item types aligning to the ES, EOs, and the corresponding CAS can be created.

3.3. ELA Passage Development

Item development for ELA begins with the research and selection of high-quality literary and informational texts. Due to the availability of appropriate passages and challenges with acquiring permissions, passages to be used on the CSLA forms are commissioned by Tri-Lin, either inhouse or by professional passage writers. The number and types of needed passages are determined by the test construction specifications, a gap analysis of the pool of available passages, and the IDP. The passage selection (and writing) guidelines, task model descriptions, and cognitive complexity framework define the number of texts/passages by text type, genre, length, and complexity. Contractor assessment specialists train passage searchers to find (or write for the CSLA items) relevant and rich texts that permit a range of content to be developed.

Passage searchers and writers submit the passages for the contractor assessment specialists to review and evaluate using approved criteria, including adherence to the cognitive demand, relevance, and purpose of the test and the appropriate use of graphics to improve text comprehension. Test passages are analyzed and rated for text complexity. The assessment specialists check the passages for clarity, correctness of language, appropriateness of language for the grade level, and adherence to the style guidelines.

Accepted passages are presented to CDE for review. Once the passages are accepted by CDE, committees of educators review them for content and bias. The committees are comprised of educators from throughout the state representing a variety of student populations, including students with disabilities and ML students. Passages accepted by both CDE and the educator committees are then used for item writing.

3.4. Science Scenario Development

Item development for science begins with the preliminary conception and composition of the interactive science simulations and cluster stimuli. The number and types of needed simulations and cluster stimuli are determined by the test construction specifications, a gap analysis of the pool of available SIMs and stimuli, and the IDP, and the topics are researched for suitability of science content, alignment to the standards, and grade-level appropriateness.

Simulations and cluster stimuli follow slightly different paths through the development process, but both include multiple steps of review and evaluation by assessment specialists using approved criteria such as adherence to cognitive complexity requirements, relevance to standards, purpose of the test, and the appropriate use of graphics and or animations. Pearson checks all stimulus text for scientific accuracy, clarity, correctness of language, appropriateness of language and science concepts for the grade level, and adherence to the style guidelines.

Simulation ideas are presented to CDE for review and feedback in the form of storyboards illustrating the intended virtual interaction, along with suggested EOs that the simulations address. CDE provides feedback on how to move forward with the development of the simulations. Revised storyboards are then reviewed by committees of educators from throughout the state representing a variety of student populations, including students with disabilities and EL/ML students. The simulations are then developed into animated interactions and reviewed by CDE, after which items are written to a variety of EOs, either internally or by educators.

Cluster stimuli are proposed as topics to CDE and then developed into drafts based on CDE feedback. Drafts are refined by Pearson with CDE input and presented to educators for review and item writing using the same criteria used for the simulations.

3.5. Item Writing

Item writer workshops (IWWs) with Colorado educators were conducted for the development of new items for the 2022–2023 cycle for mathematics, ELA, and science. IWW participants are educators from across the state representing a variety of student populations, including students with disabilities and students with limited English proficiency. CSLA item writers are proficient in written academic Spanish and begin developing CSLA items after receiving training. The educators are given item writing assignments and develop a variety of items across task types, ES, and EOs. The item writers work with Pearson and/or Tri-Lin assessment specialists when clarification is needed for CSLA items. Content specialists from CDE are also present to assist as needed. Item writers use the ESs and EOs; the CAS; secure item specification documents, including item-writing guidelines (universal design guidelines, bias and sensitivity guidelines, and editorial guidelines); and an item writing checklist to guide them in completing their assignments.

All item writers author the items in ABBI, where Pearson or Tri-Lin assessment specialists complete their initial review. The assessment specialists review and suggest revisions to the items and metadata for the item authors, who then make the revisions and resubmit the items within ABBI.

3.6. Item Review

3.6.1. Internal Review

Pearson and Tri-Lin assessment specialists evaluate each newly developed item for content correctness; grade appropriateness; and ES, EO, CAS, and cognitive complexity alignment, focusing on the quality of the items, adherence to the principles of universal design, cognitive demand, relevance to the purpose of the test, and appropriateness of graphics. Research librarians perform additional fact checking to ensure accuracy. Pearson and Tri-Lin copy editors check items for clarity, correctness of language, appropriateness of language for the grade level, adherence to style guidelines, and conformity with acceptable item-writing practices.

When appropriate, human-scored CR items are reviewed for their scorability by a Scoring Services director, and items and/or scoring rubrics with score points deemed "difficult to score" are revised in collaboration with the assessment specialist(s). Equation editor/CR items scored by an automated engine are reviewed for their scorability by a mathematics product analyst, and items and/or scoring rubrics are revised in collaboration with the assessment specialist(s).

Pearson and Tri-Lin assessment specialists also perform a universal design review to assess item accessibility irrespective of diversity of background, cultural tradition, and viewpoints; to evaluate changing roles and attitudes toward various groups; to review the role of language in setting and changing attitudes toward various groups; to appraise contributions of diverse groups (including ethnic and minority groups, individuals with disabilities, and women) to the history and culture of the United States and the achievements of individuals within these groups; and to edit for inappropriate language usage or stereotyping with regard to sex, race, culture, ethnicity, class, disability, or geographic region. The universal design review also includes reviewing items for potential bias to ensure that all items are fair and all students would have an equal opportunity to demonstrate achievement regardless of their gender, ethnic background, religion, socioeconomic status, disability, or geographic region. Items are also reviewed for visual bias, accessibility for students with disabilities, and convertibility to braille and text-to-speech.

Once the internal reviews are complete, each item's status is updated in ABBI and a lead assessment specialist conducts a final content review. Item statuses are updated in ABBI upon approval, and items are presented to CDE for review. Adhering to these processes ensures that each Colorado item measures the ES or EO and standard, is content- and grade-appropriate, is factually accurate, has appropriate answers and distractors, is accessible to all populations required to take the assessments, is free from any bias, and follows the Colorado style guidelines.

3.6.2. CDE Review

CDE reviews items in ABBI to ensure that the content is correct, the alignment is sound, the cognitive complexity is appropriate, the language and content are grade-appropriate, the graphics are clear and relevant to the item, and the content is free of bias/sensitivity issues. Once complete, CDE alerts Pearson or Tri-Lin assessment specialists. CDE's comments and determinations regarding the status of the items are recorded in ABBI, as indicated below:

- Items marked "Accept" need no more revisions and are ready for external Colorado educator content and bias reviews.
- Items marked "Accept with Edits" are revised per CDE's feedback and re-reviewed by the internal review team if necessary. These items are then reviewed by CDE again, reconciled with the assessment specialists, and deemed either "Accept" or "Reject."
- Items marked "Reject" are rejected and given a status of "Do Not Use" in ABBI. These items are either rewritten or replaced with items written by an assessment specialist. In either case, the items go through the same rigorous review process as newly developed items.

3.6.3. External Content and Bias Review

All items that pass the internal and CDE reviews are brought to external content and bias committees comprised of Colorado educators. The purposes of these educator reviews are to (1) ensure that the items are properly aligned to the CAS, accurately measure the intended content, and are grade-appropriate; and (2) identify any potential bias or stereotypes in the items. Separate committees are convened for each content area, as well as for the accommodated CSLA items. The meetings are conducted either in person or virtually and include group training on the expectations and processes of each meeting, followed by breakout groups by content area and grade where additional training is provided.

The Colorado educators are selected from across the state with diverse backgrounds and experience working with diverse learners (e.g., based on gender, race/ethnicity, income, and geography), standards and content expertise, and special population expertise (i.e., students with disabilities and EL/ML students). For science, educators are also selected based on their experience in the domain they are reviewing. For the accommodated CSLA items, an effort is made to involve educators who teach EL/ML students, are familiar with the instruction and needs of the students in an English language development program that uses native language instruction, and are proficient in written Spanish.

The committee members are trained and instructed to verify that each item and stimulus

- displays and functions correctly in TestNav 8 Preview (i.e., Pearson's online testing platform students use to access the assessment);
- aligns to the ES and/or EO;
- uses clear, unambiguous, and grade-appropriate language;
- avoids construct-irrelevant complex sentence structure;
- uses everyday words to convey meaning when vocabulary is not part of the tested construct;
- has one correct answer (depending on the item type);
- contains plausible distractors that represent feasible misunderstandings of the content (depending on the item type);
- represents the range of cognitive complexities and includes challenging items for students performing at all levels;
- is appropriate for students in the assigned grade in terms of reading level, vocabulary, interest, and experience;
- has scoring guidelines that capture exemplar responses at each score point for CR items;
- includes appropriate and clear graphics/art/photos that are relevant to the item and accessible to all testing populations;
- is free of ethnic, gender, political, and religious bias;
- avoids construct-irrelevant content that may unfairly advantage or disadvantage any student subgroup; and
- considers access issues at the time of item writing (e.g., determine how students with visual disabilities would access items with needed visuals/graphics/animation).

The committees make one of three recommendations on every item: "Accept," "Accept with Edits," or "Reject." Following the educator meetings, CDE, Pearson, and Tri-Lin review committee comments, reconcile proposed edits, and finalize item outcomes. ABBI is updated to reflect the edits and outcomes. The approved items, passages, and simulations/clusters are then made ready for inclusion on the spring operational forms as embedded field test items.

3.7. Data Review

After item development is complete, selected items are placed on the operational assessments in embedded field test positions. The goal of field testing is to allow for the evaluation of the quality of the items through a review of item performance data to determine their inclusion in the operational item pool. To accomplish this, psychometricians perform statistical analyses on the field tested items following their administration in a field test environment to evaluate their quality.

Classical statistics include item means (*p*-values), item-total correlations/point biserials, and distribution of responses across answer options or score points, depending on the item type. Differential item functioning (DIF) analyses are conducted on various subgroups (gender, ethnicity, free and reduced lunch, IEP, and MLs) using Mantel–Haenszel Delta DIF statistics (Dorans & Holland, 1992). The same analysis methods are used for CSLA items, but the DIF analyses are conducted by gender only due to the population of students taking the form. Classification rules derived from National Assessment of Educational Progress (NAEP) guidelines (Allen et al., 1999) were used to classify items as having either negligible, moderate, or significant DIF. Items are then flagged based on the criteria in Table 3.2, and flagged items are taken to a data review meeting where a committee of educators reviews the flagged items and their statistics along with student performance data.

Table 3.2 presents the statistical flags applied to the field tested items. Classical statistics include item means (*p*-values), item-total correlations/point biserials, and distribution of responses across answer options or score points, depending on the item type. Differential item functioning (DIF) analyses are conducted on various subgroups (gender, ethnicity, free and reduced lunch, IEP, and MLs) using Mantel–Haenszel Delta DIF statistics (Dorans & Holland, 1992). The same analysis methods are used for CSLA items, but the DIF analyses are conducted by gender only due to the population of students taking the form. Classification rules derived from National Assessment of Educational Progress (NAEP) guidelines (Allen et al., 1999) were used to classify items as having either negligible, moderate, or significant DIF. Items are then flagged based on the criteria in Table 3.2, and flagged items are taken to a data review meeting where a committee of educators reviews the flagged items and their statistics along with student performance data.

Statistic	Criterion	Possible Indication
<i>P</i> -value	< 0.1 or > 0.9	Very difficult or easy item
Item-total correlation	< 0.15	Poorly discriminating item
Distractor item-total correlation (SR only)	> 0.0	Possible miskey*
Score point percentage (multi-point items only)**	<1%, >50%, or >60%	Very few students or many students
		got a certain score
Differential item functioning (DIF)***	B, C	Item could be biased toward a certain student demographic group

Table 3.2. Item Statistical Flagging Criteria

*Possible miskey because the key should have a positive item-total correlation

**If a multi-point item has less than 1% for a score point or more than 50% 0s, the item is flagged. The rule is 50%+ 0s for mathematics, ELA, and CSLA and 60%+ for science.

***B DIF indicates moderate DIF, whereas C DIF indicates significant DIF.

Separate data review committees are convened for each content area, including the accommodated CSLA items. Participants are provided item images and metadata, along with the classical and DIF statistics. During the data review meetings, educators are trained to interpret the statistical information and judge the appropriateness of the flagged items. The committee members use the data as a tool to direct them toward potential flaws in an item and discuss whether there are construct-irrelevant reasons for a data flag. A data flag, by itself, is not the sole reason an item is rejected. Committee members are instructed that their final judgments about the appropriateness or fairness of an item for any individual and subgroup encompassed by the data flag should be based on their expertise with their content area and experience as Colorado educators.

Committee members review each item and recommend whether to accept or reject it. An accepted item indicates that the educators, through their varying expertise, determined that there is not a construct-irrelevant reason for the data flag within the item, whereas a rejected item indicates that the educators determined there is a construct-irrelevant reason for the data flag. Construct-irrelevant reasons for data flags could include issues such as language that is above grade-level or content that is biased against a particular group. In contrast, construct-relevant explanations could be difficult content that is part of the standards or distractors that reflect a very common misunderstanding of the concept covered by the item, which would not be a reason to reject the item.

Following the data review meetings, CDE reviews the committees' recommendations and makes final decisions. All accepted items are moved into "Ready for Operational" status. Table 3.3 presents the final results following the data review based on Spring 2023 data (i.e., the number of field tested items that were either accepted, accepted for revision and re-field test, or rejected as a result of the data review).

		#Accepted for Revision		
Content Area	Grade	#Accepted	and Re-Field Test	#Rejected
Mathematics	3	17	2	0
	4	9	0	0
	5	15	2	0
	6	28	3	0
	7	24	3	0
	8	18	0	0
ELA	3	7	0	4
	4	29	0	1
	5	31	0	3
	6	28	0	1
	7	42	0	3
	8	47	0	5
CSLA	3	4	0	1
	4	2	0	3
Science	5	87	2	2
	8	87	1	2
	11	84	5	15

 Table 3.3. Data Review Results

Chapter 4: Test Construction

The Spring 2023 ELA and science grades 5 and 8 operational test forms were newly developed test forms developed by Pearson, whereas the Spring 2023 mathematics operational test forms were either intended for use in the postponed 2019–2020 test administration or were newly developed test forms for use in the 2021–2022 test administration. The Spring 2023 CSLA newly constructed forms were constructed through an iterative process between Pearson and Tri-Lin. The Spring 2023 CMAS Science grade 11 test form was a subset of the 2022 core form based on the proportional blueprint reduction due to speededness. Items were selected as anchors only if they were found in the first part of a unit that showed any speededness concerns. Once the test forms were constructed, CDE reviewed the forms, provided feedback, and gave final approval.

4.1. Test Form Construction

Most students take the CMAS assessments online, which allows for the use of innovative item types and for accessibility features such as text-to-speech and color contrast to be available to all students in both English and Spanish for mathematics and science and in English for the online ELA forms. When building the test forms, assessment specialists select a set of operational items in accordance with the test blueprint and test construction specifications. Items selected for operational use must meet the blueprint requirements and should include a variety of topics and contexts with specified psychometric targets. The following guidelines were used during the Spring 2023 form construction:

- Adherence to the test blueprints and test construction specification targets
 - Exact match to blueprint for subclaims
 - Same distribution of cognitive complexity
 - Same percentage of TEs
- Review of the item statistics and adherence to the statistical criteria in the test construction specifications
 - Evaluation of item means, point biserial correlations, and score point distributions
 - Evaluation of item response theory (IRT) item parameter estimates
 - Evaluation of item fit statistics
 - Mirroring of 2018 test characteristic curves (TCCs) and conditional standard error of measurement (CSEM) curves (mathematics and ELA only⁵)
 - Minimization of CSEM curves around the cut scores
- Balance in the representation of gender, ethnicity, geographic regions, and relevant demographic factors
- Thorough review of individual items to establish that the content within items is up-todate and relevant
- Selection of items with various stimulus types throughout the test form to enhance the test-taking experience by providing variation in the appearance of item types presented
- Efficient and deliberate use of varied content representative of the knowledge and skills in the ESs or EOs
- Review of the full form, including field test items, for clueing and/or content overlap

⁵ There was no mirroring of the CSEM curves for the Spring 2023 science assessments because the 2023 curves serve as the base to which future forms will need to mirror.

After the initial operational item pull is complete, assessment specialists verify that the test forms meet the blueprint and test construction specifications (i.e., the required ES or EO coverage, claim and subclaim coverage, cognitive complexity allocation, and task type). The form is then presented to a Pearson psychometrician who verifies that the form falls within the established psychometric and blueprint parameters and identifies the anchor item set within each operational form. (See Chapter 9 for details about the anchor sets.) Once the form is vetted internally, the form is presented to CDE for review. If needed, the assessment specialists, Pearson psychometricians, and CDE collaborate to finalize the form. This can be an iterative process, with the result being CDE's approval of the form.

After the operational form is approved, field test items are selected from the item bank. Items chosen for field testing are placed on a form in a designated section and sequence. Pearson and Tri-Lin assessment specialists assemble field test sets of items so that they comprise the appropriate distribution of standards, subclaims, task types, topic coverage, cognitive levels, and key distributions to meet the required item refresh rates in following years.

4.2. Accommodated Test Forms

Accommodated test forms are available for students who need them and include paper, large print, and braille forms, as well as auditory/signed presentation scripts and online forms designed to work with assistive technology such as screen readers. Auditory/signed presentation scripts are available for the paper forms in both English and Spanish for mathematics and science. English auditory/signed presentation scripts are available for both online and paper forms for local translation into languages other than Spanish including sign language. Due to the effort involved in creating an approved accommodated form, these forms are not refreshed at the same rate as the online forms.

4.2.1. Paper

Paper-based versions of the CMAS assessments are available as an accommodation or for schools that choose not to test online as allowed by state law. CSLA is the accommodated version of CMAS ELA for eligible Spanish-speaking students in Grades 3 and 4 and is administered on paper. A Spanish transadaptation is also available on paper for CMAS Mathematics and Science.

The paper form is parallel to the online form, meaning the paper and online forms include the same operational items. To support this, parallel paper-based items were developed for TE items in a way that was comparable in terms of student interaction. In some cases, this was achieved with traditional SR items, and in others it required an item that had to be human-scored. For example, a drag-and-drop TE item may have been converted to an item in which the student had to draw lines from the draggers to the drop bays. During equating, the TE item statistics are compared to the paper-based version to confirm equivalence. CSLA also has paper-based versions of TE items that were developed to be similar to the ELA paper-based versions of TE items, although the CSLA paper-based TE items were all machine scored.

The Spring 2023 operational items on the ELA and science paper-based forms were the same as the operational items on the online forms. The Spanish version of the science paper form was the same as the operational items on the English paper form. The mathematics paper-based forms in grades 3, 5 and 7 were the same as the 2020 administration, and the mathematics paper-based forms in grades 4, 6 and 8 were the same as the 2022 administration.

4.2.2. Braille

After approval of the paper test materials, a braille version of the assessments is created according to the process outlined below:

- 1. Pearson Braille Services uses constructed test forms to review the items and clusters for identifying potential modifications related to spacing constraints, visual bias in response expectations, and illustration complexity. Recommendations are documented for modifications to text and images.
- 2. The modifications document is provided to Pearson assessment specialists to ensure compliance with item constructs and assessed standards.
- 3. Pearson assessment specialists and CDE review the recommendations and provide feedback regarding any modification concerns.
- 4. Pearson Braille Services translates the test form into braille and designs print images as tactile graphics.
- 5. The braille form is proofread by a two-person proof team consisting of a native braille reader, certified as a braille proofreader by the National Library Service, and a sighted copyholder.
- 6. Edits to text and graphics are made based on the proof team's feedback.
- 7. The braille form is reviewed by a committee of Pearson staff, CDE staff, and Colorado Teachers of the Visually Impaired (TVI).
- 8. The braille form is finalized, and hardcopy test books are produced.

The Spring 2023 mathematics assessments in grades 3, 5, and 7 used the same braille form intended for use in the 2020 administration, whereas the Spring 2023 mathematics assessments in grades 4, 6, and 8 used the same braille form intended for use in the 2022 administration.

4.2.3. Large Print

Large print versions of the CMAS assessments are a 50% enlargement of the regular paper form and are printed on $14" \times 18"$ paper. When needed, the large print version includes a visual description booklet that contains a description of artwork (maps, photographs) for which it may be difficult for a student with visual impairments to see the subtleties within the art. CDE reviews the paper form and identifies which pieces of art need to be described in the visual description test booklet.

Chapter 5: Test Administration

The CMAS assessments are administered in TestNav, Pearson's online testing platform. PearsonAccess^{next} is the student test management portal Assessment Coordinators and Test Administrators use to manage student tests and registrations and order materials if needed. Prior to the administration of the assessments, districts, schools, and teachers are to ensure that their students and systems are prepared for the assessments. Such information is communicated to the appropriate individuals via manuals, virtual trainings, and recorded modules.

5.1. Manuals

The following manuals are available online at <u>https://coassessments.com/manuals/</u> to support the CMAS administration:

- The *CMAS Test Administrator Manual* for both online and paper-based testing describes the procedures Test Administrators are to follow when administering the assessments. Test administration policies and procedures are to be followed as written so all testing conditions are uniform statewide. The guidelines and test administration scripts in these manuals are provided to ensure that every student in Colorado receives the same standard directions during the test administration by content area, grade level, and accommodation.
- The *CMAS and CoAlt Procedures Manual* provides instructions for coordination of the CMAS assessments. Instructions include the protocols all school staff are to follow related to test security, test administration, and providing accommodations to students with disabilities and ML students and accessibility features to all students. The manual also includes the tasks to be completed by District Assessment Coordinators (DACs), School Assessment Coordinators (SACs), and District Technology Coordinators (DTCs) before, during, and after the test administration.
- The *PearsonAccess^{next} Online User Guide* provides guidance for DACs, SACs, DTCs, Test Administrators, and student enrollment/sensitive data personnel who use PearsonAccess^{next}.

5.2. Administration Training

Administration training is intended to make sure all individuals involved in CMAS assessment activities at the school and district levels are prepared to follow administration processes and procedures with fidelity, as well as to support adherence to security procedures. Fidelity to standardized test administration processes and procedures helps ensure the comparability of resulting scores and accurate interpretation of results.

Live virtual trainings were conducted by CDE for groups of DACs, during which the DACs independently accessed CDE- and Pearson-developed lessons through an interactive training platform. The lessons contained information regarding proper procedures for administration, security requirements, receiving and returning materials to Pearson, and the use of PearsonAccess^{next} with TestNav. Upon completion of each training lesson, CDE provided additional details pertaining to the covered information and an opportunity for questions and answers. After CDE trained the DACs, the DACs trained the SACs, Test Administrators, and any other individuals within the district who planned to participate in the CMAS administration.

Pearson customer service center staff were also trained to answer questions about the administration and to escalate inquiries as necessary. A knowledge base of common questions was created by CDE and Pearson based on information covered in the training materials and manuals to ensure accurate and consistent responses to school and district personnel, with revisions and additions made as needed. CDE met with Pearson daily during the administration window to review questions from districts and ensure that appropriate answers were provided. Policy questions received by the Pearson customer service center were referred to CDE.

Live webinar accommodations and accessibility features training was also conducted by CDE for district-level personnel to ensure that all individuals providing these supports across the state follow the procedures associated with each accommodation and accessibility feature. Providing accessibility features and accommodations in a standardized manner helps to ensure the comparability of resulting scores and accurate interpretation of results.

Resources used during the live trainings are posted on the CDE website at <u>http://www.cde.state.co.us/assessment/trainings-archive</u>. Administration training materials such as slide decks, manuals, and how-to guides were also available on the CDE Assessment Unit website for training SACs and Test Administrators.

5.3. Practice Resources

Colorado Practice Resources (CPRs) are available online at <u>https://coassessments.com/practice-resources/</u> to help students become familiar with the CMAS item types. The CPRs are updated as needed to reflect current accessibility features and any updates to TestNav that may impact student interactions with the assessment. Accommodated versions of the CPRs are also available so students can practice using accommodations and accessibility features such as English text-to-speech, color contrast, and Spanish text-to-speech. Paper sample items for students taking the paper versions of the assessments are available in PDF format for download. CPRs are accompanied by scoring guides that include performance metrics and alignment to the CAS.

5.4. Onsite Preparation

Districts were instructed in site readiness preparations, TestNav, proctor caching, and use of the SystemCheck tool to configure their testing technology environments and evaluate their configuration for district readiness. Districts were also provided tools and resources to test their environment readiness status and infrastructure systems.

5.5. Accessibility Features and Accommodations

Accessibility is considered from the beginning of the test development process and is inherent within the CMAS assessment and administration. For example, TestNav includes tools and accessibility features that are available to all students to increase the accessibility of the assessments (e.g., highlighter, online color contrast). Also included is the text-to-speech accessibility feature for mathematics and science that allows for text to be read to students by the embedded software audio feature. Although this feature is available to all students, only students who need text-to-speech are assigned to it in advance of testing. Similarly, the CSLA assessments were developed to be linguistically accommodated Spanish tests and, as such, are designed to be linguistically accessible for eligible Spanish-speaking students.

Accommodations are also available to the population of students with IEP or 504 plans or ML students. For example, students may have extended time as required by their IEP or as allowed for students classified as ML. The test is also available with Spanish text-to-speech (mathematics and science only) and paper transadaptations or auditory presentation scripts that can be translated into other languages. Accommodations are intended to provide a student with an opportunity to access the assessment without impacting the measured construct. Accommodations can be adjustments to the test presentation, materials, environment, or response mode of the student and are based on individual student need. They should not provide an unfair advantage to any student. Providing an accommodation for the sole purpose of increasing test scores is not ethical.

Accommodations must be documented and used regularly during classroom instruction and assessments prior to the testing window to ensure that the student can successfully use the accommodation. However, although accommodations are used for classroom instruction and assessments, some may not be appropriate for use on statewide assessments. As a result, it is important that educators become familiar with the state assessment policies about the appropriate use of accommodations and that districts have a plan in place to ensure and monitor the appropriate use of accommodations.

Certain accommodations are allowed only in special cases with CDE approval due to being an inherent violation of the intended construct. For example, the accommodations of calculator on non-calculator sections of mathematics and a scribe for CR items for ELA/CSLA require approval to preserve the intended constructs of mathematics and writing according to the CAS.

Some of the available accommodations for CMAS include CSLA in place of ELA (other linguistic accommodations do not apply as CSLA is the linguistic accommodation), English auditory/signed presentation scripts (mathematics and science), Spanish auditory/signed presentation scripts (mathematics and science), auditory/signed presentation scripts for signed presentation and local translation into languages other than English and Spanish, braille forms, large print forms, assistive technology forms for screen readers (mathematics and ELA only), and Spanish forms with and without text-to-speech for mathematics and science.

5.6. Test Security

Test security procedures are put in place to enhance the likelihood that security is maintained before, during, and after the assessment administration. For example, materials used during the paper administration of the assessment are to be kept in locked storage locations when not under the direct supervision of Pearson or approved testing coordinators and administrators. All district and school personnel involved in the CMAS test administration are required to participate in annual local training. DACs are responsible for overseeing training for the district, including verifying that the DTC and SACs are trained. SACs are responsible for ensuring that Test Administrators and all other individuals involved in test administration at the school level are trained and subsequently act in accordance with all security requirements.

A chain of custody plan for materials is required to be written and implemented to ensure that materials are securely distributed from DACs to SACs to Test Administrators and securely returned from Test Administrators to SACs and then to DACs. SACs are required to distribute materials to and collect materials from the Test Administrators each day of testing and to securely store and deliver materials to DACs after testing is completed in accordance with the instructions in the *CMAS and CoAlt Procedures Manual*.

All individuals involved in the test administration are required to sign a security agreement prior to handling test materials, which requires them to follow all procedures set forth in the aforementioned manuals and prevents them from divulging the contents of the assessment, copying any part of the assessment, reviewing test items with the students, allowing students to remove test materials from the testing room, or interfering with the independent work of any student taking the assessment. During online testing, all computer functions not necessary to complete the test are disabled, and access is restricted to disallow activities in all applications outside the testing program.

PearsonAccess^{next}, the assessment management system used during the administration, includes permissions-based user role access to all information within the system, including accessing student information, setting up and delivering test sessions (preparing, starting, and stopping sessions), administering tests (unlocking, resuming, and locking units), and accessing reports. Access to the online assessments through the student testing system, TestNav, is tightly controlled before, during, and after test administration, requiring a login ID and password to enter the system for each unit. Test content is locked and cannot be accessed by students or district/school-level users after the students submit their answers. Each unit of the paper test requires students to break the unit seal before accessing the test content. To enhance security during test administration, test forms are spiraled, decreasing the likelihood that a student would be working on the same items as their peers at the same time.

After all test sessions are completed at a school, used and unused materials are required to be securely stored and returned to the DAC by the district deadline for shipment to Pearson. DACs are required to report any missing test materials or test irregularities and to complete the appropriate documentation.

Chapter 6: Scoring

The CMAS assessments use a combination of machine, human, and automated scoring. All SR and TE items are machine-scored, with point values varying by item type and assessment. Most mathematics and all science CR items are handscored, with a small number of CR mathematics items scored by the math reasoning engine (MRE). The ELA PCR items are scored on two trait dimensions using a combination of human scoring and automated scoring. Pearson's Scoring Services team conducted the handscoring for the CR, human PCR, and parallel paper-based versions of the TE items for CMAS. Appendix C presents the holistic rubrics used to score both the CMAS ELA/CSLA PCR items. To maintain comparability, scoring rules for the machine-scored items and rubrics, anchor papers, rules and scoring methods for the handscored items were preserved from previous years.

6.1. Machine Scoring

Machine-scored items include key-based and rule-based items. Key-based items tend to be a version of multiple-choice and multiple-select (i.e., students select more than one correct answer) items. Rule-based items are machine-scored TE items. Initial scoring expectations are developed during item development and are included in the item review process. The scoring rules and correct responses are included in the items' XML coding. Prior to scoring, key checks and adjudication are completed for all machine-scored items to verify that the machine is correctly identifying correct and incorrect responses. If there is a discrepancy in the scoring, content experts review the item and adjustments are made as needed. During testing, actual distribution of scores is compared to expected distribution. Further evaluation is completed if a discrepancy is identified.

6.2. Human Scoring

6.2.1. Operational Scoring

Human-scored operational items are scored using either a distributed or synchronous scoring model depending on the content area. Items on the CSLA form and paper-based TE items are scored synchronously, while scoring for all other human-scored items is completed through distributed scoring. At times, distributed scorers are leveraged to score paper-based TE items. Scoring includes several components that together provide a comprehensive performance scoring model. For example:

- All scorers are required to pass a background check and sign a nondisclosure agreement, agreeing to adhere to all security and confidentiality requirements.
- All scorers have a four-year degree at a minimum. Scorers are assigned to content areas based on their educational backgrounds, related fields of work, and their demonstrated knowledge in the content area.
- Scorers of CSLA items must be proficient in written Spanish and English languages.
- Scorers are trained using comprehensive training materials developed by scoring experts that rely on student responses scored at the rangefinding meetings. Prior to qualifying for an item, scorers review an online training module that includes an overview of scoring; information specific to the item such as the prompt and rubric; and anchor sets. Scorers then score multiple practice sets prior to attempting qualification. After successful qualification, scorers begin scoring the item.

- For CSLA items, training is led by a Pearson scoring director who presents item-specific materials, including the prompt and rubric. The scoring team then receives training on anchor sets prior to moving into the online portion of training where scorers apply scores on multiple practice sets within the electronic scoring system. After each practice set, the scoring director reviews the practice set results with the scorers prior to scorers taking the qualification sets. After successful qualification, scorers begin scoring the item.
- Scorers must pass a qualifying test for the item types that they score. Qualification sets are designed to test scorer accuracy across the range of score points for a given item.
- Student responses are converted to electronic images at Pearson facilities and are then transmitted for computer-based scoring.
- Distributed scorers are located across the United States and work from their homes. Their computers are set up for image-based scoring. A comprehensive set of scoring and monitoring tools are integrated into the scoring system, and content supervisory staff are available by phone to help answer any training or scoring questions. With distributed scoring, scorers are able to score seven days per week with extended evening hours.
- Synchronous scorers are located across the United States and also work from their homes; however, they are only permitted to score while attending daily Microsoft Teams meetings with content supervisory staff. As with distributed scoring, synchronous scoring uses a comprehensive set of scoring and monitoring tools integrated into the scoring system, with content supervisory staff available within the Microsoft Teams interface to help answer any training or scoring questions. Unlike distributed scoring, synchronous scoring is typically only completed Monday through Friday during normal business hours. Synchronous scorers are used for CSLA forms and paper-based TE items.
- Additional security procedures are in place for distributed scoring. Data are securely transmitted through HTTPS and SSL technology using secure protocols for system authentication. Student responses are randomly routed through the scoring platform to prevent scorer knowledge of student information, unless a student self-identified in the response. Scorers agree not to use shared, institutional, or public computers to score and not to save student responses or test materials. Scorer printing capabilities of materials, such as anchor papers, are only approved for printing after they have undergone and passed a personally identifiable information review by CDE. Scorers agree to securely destroy or return printed materials to Pearson at the conclusion of scoring.

Pearson's processes and tools provide a replicable quality system that strengthens consistency across projects and locations within Pearson's Scoring Services operations. Pearson's Scoring Services team uses a comprehensive system for continually monitoring and maintaining the accuracy of scoring at both the group and individual levels. This system includes daily analysis of a comprehensive set of statistical monitoring reports, as well as regular "backreading" of scorers. Reliability statistics are monitored during scoring, and interventions are applied if a scorer or item is not meeting the minimum requirements.

6.2.2. Field Test Scoring

Embedded field test scoring is completed using synchronous scoring that took place within daily Microsoft Teams meetings. All scorers are required to have a four-year college degree. Field test scorers receive stand-up training led by a Pearson scoring director who presents item-specific materials, including the prompt and rubric. Scorers then review the anchor sets in a group setting prior to scoring practice sets on paper.

6.2.3. Rangefinding

Scoring rubrics are generated for each unique item for mathematics and science, while ELA/CSLA use holistic rubrics for each item type (as shown in Appendix C:). Rubrics are finalized during rangefinding and are maintained, along with the training materials for each item, by Pearson's Scoring Services group.

Rangefinding meetings take place following the administration in which an item was field tested. The purpose of rangefinding is to define the range of performance levels within the score points of the rubrics using student responses. Each rangefinding committee includes Pearson's Scoring Services and content staff, state content representatives, and educators with relevant grade-level and content expertise and experience with special populations. Participants create consensus scores for a sample set of student responses that are subsequently used to develop effective training materials for scoring of the CR items.

Pearson's scoring directors construct one rangefinding set per item, which includes approximately 30 responses. For multi-point items, pre-constructed sets with additional responses are brought to the meeting. Responses included in these sets represent the full spectrum of scores to the greatest extent possible. The responses for each item are randomly ordered to provide committee members an opportunity to determine the spectrum of scores without bias, although actual scores are not revealed to committee members. Each set includes responses clearly earning each available score point for each item type. The set also includes sample responses that may have been challenging to score (i.e., the score points earned were not necessarily clear).

Following an introductory session presented by a member of the Scoring Services group, the rangefinding committee is divided into several breakout groups based on educator expertise. Each group is assigned a range of field test items to be reviewed based on the following process:

- 1. The scoring director introduces each item. The committee reviews the item and corresponding rubric.
- 2. The committee reads student responses—individually or as a group—and then discusses and decides the most appropriate score for each response.
- 3. The scoring director records committee members' comments and the final consensus score for each student response. Consensus is reached when a majority of committee members agree on a particular score point for a response and all members agree to accept the score of the majority.
- 4. A designated committee member records consensus scores. After reviewing responses for each item, the committee member compares their notes with those kept by the scoring director and provides sign-off to indicate agreement with the recorded scores.

Following the rangefinding meetings, Scoring Services creates training materials with an anchor set that is used for initial training (up to 15 responses) and a full practice set (up to 10 responses). For ELA, two anchor sets are used per item, one for content and one for conventions. Each CR item is then scored with the associated training materials.

6.2.4. Backreading

Backreading is the method of immediately monitoring a scorer's performance and is an important tool for Pearson's scoring supervisors. Backreading is performed in conjunction with the statistics provided by reader performance reports and as indicated by scoring directors, allowing scoring supervisors to target particular readers and areas of concern. Scorers showing low inter-rater agreement or those showing anomalous frequency distributions are given immediate, constructive feedback and monitored closely until sufficient improvement is demonstrated. Scorers who demonstrate through their agreement rates and frequency distributions that they are scoring accurately are continued to be spot-checked as an added confirmation of their accuracy. The agreement rate requirements are as follows:

- 1-point item: 90% perfect and 95% perfect plus adjacent agreement
- 2-point item: 90% perfect and 95% perfect plus adjacent agreement
- 3-point item: 80% perfect and 95% perfect plus adjacent agreement
- 4-point item: 70% perfect and 95% perfect plus adjacent agreement
- 5+-point item: 65% perfect and 95% perfect plus adjacent agreement

Section 11.5 of this technical report presents an explanation of the rater agreement statistics and the results from the Spring 2023 administration.

6.2.5. Calibration

Calibration sets are responses selected as examples that help clarify scoring issues, define more clearly the lines between certain score points, and reinforce the scoring guidelines as presented in the original training sets. They can be applied to groups, a subset of groups, or individual scorers as needed. These sets are used to proactively promote accuracy by exploring project-specific issues, score boundaries, or types of responses that are particularly challenging to score consistently. Scoring directors administer calibration sets as needed, particularly for more difficult items.

6.2.6. Validity Papers

As a quality monitoring tool used during scoring, validity papers are student responses chosen by Pearson scoring directors to measure the accuracy of a scorer when applying the scoring rubric. Validity papers are blind to scorers, which means a scorer is not aware when they are scoring a validity paper. Scoring directors may choose to include an annotation with a validity paper so that a scorer will receive immediate feedback if a validity paper is scored incorrectly. Validity statistics are monitored by scoring directors throughout the life of a scoring project.

6.3. MRE Scoring

The math reasoning engine (MRE) evaluates responses based on rubric criteria specific to the expected item responses and does not require human scoring to train the engine. Because the engine can reason about the student's math, there is no need to enumerate all possible correct responses (as one would with other more traditional machine scoring). The MRE scoring criteria are defined in terms of the mathematical characteristics of a response the engine uses to evaluate the extent to which a student response satisfies a scoring rubric (e.g., equivalence, form, precision, and constraints).

Before a mathematics item is scored operationally, it goes through a rubric refinement and validation process. After field testing, online student responses are aggregated into a set of individual unique responses that are back-read by human scorers. When the human scorers disagree with the score assigned by the scoring engine, they flag the response for further review. The flagged responses are then reviewed by Pearson content experts to determine if scoring rules should be adjusted to better fit the rubric.

If scoring rule adjustments are made, MRE can rescore the entire item based on the new scoring rules configuration. During rescores, every changed response score is identified and reviewed by content experts to evaluate the impact of the rule change on all responses to ensure that the change had the intended effect and nothing more. The data provided to committee members is based on the final scoring rules reflecting how the responses are scored operationally and includes the most common field test item responses providing committee members with additional information to evaluate item quality.

6.4. Automated Scoring

Pearson's Intelligent Essay Assessor (IEA) was used for scoring one of the 12 operational PCRs in 2023 for the CMAS ELA assessment. The prompt had an automated scoring model based on training from prior operational years and was also checked for quality using second scores by human scorers. Ten percent of responses were randomly selected and given a second reliability score to provide data for evaluating the consistency of scoring.

Some responses were not scored by the engine at all and received a first human score based on Smart Routing. The use of Smart Routing during operational scoring increases the quality of automated scoring by routing responses that are more likely to disagree with a human score to receive an additional human score. Because the cases that result from "in between" scores are based on modeling human scores, it follows that human scores may be less certain as well. Therefore, responses are more likely to be double-scored and resolved if the IEA and human scores are non-adjacent. Smart routing is used as needed to achieve targeted quality metrics (e.g., validity agreement or agreement with human scores).

6.4.1. Quality Criteria for Evaluating Automated Scoring

The primary evaluation criteria for IEA are based on responses to validity papers with "known" scores assigned by experts. A set of validity papers seeded into human scoring throughout the administration is used to monitor the human-scoring process over time. The expectation is that IEA can score validity papers at least as accurately as humans can score the papers. Additional measures for evaluating automated scoring include Pearson correlation, kappa, quadratic-weighted kappa (QWK), exact agreement, and standardized mean difference (SMD) that are computed between pairs of human scores and between IEA and humans to evaluate how performance is the same or different. Criteria for evaluating the training of IEA given these measures include the following:

- Pearson correlation between IEA and human scores should be within 0.1 of humanhuman correlation.
- Kappa between IEA and human scores should be within 0.1 of human-human kappa.
- QWK between IEA and human scores should be within 0.1 of human–human QWK.

- Exact agreement rate for IEA and human scores should be within 3.0% of the humanhuman exact agreement rate.
- SMD between IEA and human scores should be less than 0.15.

The specific criteria for evaluating IEA included both primary and secondary criteria, as described below.

6.4.1.1. Primary Criterion

The performance of IEA was evaluated by comparing IEA scores with human scores for the set of validity papers. The primary criterion is stated as follows: *With smart routing applied as needed, IEA agreement is as good as or better than human agreement for each trait score.* For a given prompt, this criterion is operationalized as follows:

- 1. Determine agreement of the human scores with the validity papers for each trait.
- 2. Calculate agreement of the IEA scores with the validity papers for each trait.
- 3. Compare the IEA-human agreement on the validity papers.
- 4. Deploy IEA operationally if the IEA validity agreement is greater than or equal to the human agreement for each trait.

When it is not possible to use human-scored validity responses in evaluating IEA performance, IEA is evaluated based on IEA-human exact agreement for each trait score and compared to agreement based on responses that are double-scored by humans. IEA-human agreement is evaluated on a portion of the data according to the following steps:

- 1. Determine exact agreement of the two human scores with each other for each trait.
- 2. Calculate agreement of the IEA scores with the human scores for each trait.
- 3. Compare the IEA-human agreement with the human-human agreement.
- 4. Deploy IEA operationally if the IEA-human agreement is within 5.25% of the humanhuman agreement.

In addition to the overall comparison, the following performance thresholds are targeted in the test dataset: (1) at least 65% overall IEA-human agreement and (2) 50% IEA-human agreement by score point (i.e., conditioned on the human score). These targets go beyond the contingent primary criteria approved by the consortium state leads.

6.4.1.2. Secondary Criterion

The secondary criterion involves comparing agreement indices for IEA-human scoring for various demographic subgroups and is stated as follows: *With smart routing applied as needed, IEA-human differences on statistical measures for each trait score are within the Williamson et al. (2012) tolerances for subgroups with at least 50 responses.* IEA-human agreement is evaluated according to the following steps:

- 1. Determine exact agreement of the two human scores with each other for each trait.
- 2. Calculate agreement of the IEA scores with the human scores for each trait.
- 3. Compare the IEA-human agreement with the human-human agreement.
- 4. For subgroups with at least 50 IEA-human scores and at least 50 human-human scores, compare agreement indices to the following criteria:

- a. Pearson correlation between IEA-human should be within 0.1 of human-human.
- b. Kappa between IEA-human should be within 0.1 of human–human.
- c. Quadratic-weighted kappa between IEA-human should be within 0.1 of human-human.
- d. Exact agreement between IEA-human should be within 5.25% of human-human.
- e. SMD between IEA-human should be less than ± 0.15 (this criterion was applied to subgroups with at least 50 IEA-human scores).

Although it is not expected that these criteria will be met for all subgroups for all prompts, if results of the evaluation between IEA and human scoring for subgroups for any prompt indicate that IEA performance persistently fails on the criteria listed above, considerations would be given to resetting the responses scored by IEA and reverting to human scoring until such time that an alternate IEA model could be established with improved subgroup performance.

In addition to the secondary criterion, the performance of IEA is also compared with the following targets on the various measures for subgroups with at least 50 responses:

- Pearson correlation between IEA-human should be 0.70 or above.
- Kappa between IEA-human should be 0.40 or above.
- Quadratic-weighted kappa between IEA-human should be 0.70 or above.
- Exact agreement between IEA-human should be 65% or above.

6.4.2. Hierarchy of Assigned Scores for Reporting

When multiple scores are assigned for a given response, the following hierarchy determines which score is reported operationally:

- The IEA score is reported if it is the only score assigned.
- If an IEA score and a human score are assigned, the human score is reported.
- If two human scores are assigned, the first human score is reported.
- If a backread score and human and/or IEA scores are assigned, the last backread score is reported.
- If a resolution score is assigned, the resolution score is reported. If nonadjacent scores are encountered, responses are automatically routed to resolution.

Chapter 7: Standard Setting

To support the interpretation of student results, student performance on the CMAS assessments is described in terms of performance levels as presented in Table 2.2. Standard setting is the process of translating those policy-driven performance standards into scores on the assessment. The purpose of standard setting is to determine the boundaries—or cut scores—along the score scale that differentiate student performance among those levels (e.g., Cizek et al., 2004; Kane, 1994).

Table 7.1 presents the cut scores for each content area and grade. The mathematics and ELA cut scores were set in 2015 in collaboration with the PARCC consortium using the Evidence-Based Standard Setting (EBSS) method (Beimers et al., 2012), as detailed in the 2015 PARCC *Performance Level Setting Technical Report* (Davis & Moyer, 2015). CSLA cut scores were set in 2016 using the Modified Extended Angoff method, as detailed in the *CSLA Colorado Spanish Language Arts Standard Setting Report* (CDE, 2016). Standard setting for the new science assessment took place from September 27–28, 2022, using a modified version of the Item Descriptor (ID) Matching method (Ferrara et al., 2008), as detailed in the *CMAS Science 2022 Standard Setting Report* (Pearson, 2024).

Content Area	Grade	Did Not Yet Meet Expectations	Partially Met Expectations	Approached Expectations	Met Expectations	Exceeded Expectations
Mathematics	3	650–699	700–724	725–749	750–789	790–850
	4	650–699	700–724	725–749	750–795	796–850
	5	650–699	700–724	725–749	750–789	790–850
	6	650–699	700–724	725–749	750–787	788–850
	7	650–699	700–724	725–749	750–785	786–850
	8	650–699	700–724	725–749	750-800	801-850
ELA	3	650–699	700–724	725–749	750-809	810-850
	4	650–699	700–724	725–749	750–789	790–850
	5	650–699	700–724	725–749	750–798	799–850
	6	650–699	700–724	725–749	750–789	790–850
	7	650–699	700–724	725–749	750–784	785–850
	8	650–699	700–724	725–749	750–793	794–850
Science	5	-	650–724	725–749	750–788	789–850
	8	_	650-724	725–749	750–796	797–850
	11	_	650–724	725–749	750–786	787–850
CSLA	3	650–699	700–724	725–749	750–778	779–850
	4	650–699	700–724	725–749	750–771	772-850

The ELA assessment also includes a Reading score that has the same range and cut score for all grades. There is only one cut score that corresponds to the *Met Expectations* overall performance level, as shown in Table 7.2, that was determined using the cut information from setting the standards on the overall ELA test (i.e., it was not set separately at the standard setting meeting).

Table 7.2. ELA Reading Met Expectations Cut Score

Scale Range	Cut Score
110–190	150

Science also includes performance indicator cut scores that indicate average performance in each reporting category compared to the state, as shown in Table 7.3. These cuts are not used for accountability and change from year to year. Students with scores below this range scored "lower than average" in the reporting category, and students above the range scored "higher than average."

Grade	Physical Science	Life Science	Earth and Space Science	SEP
5	441–519	440–522	446–519	448–517
8	444–515	440–516	442–516	447–514
11	442–511	441–512	440–512	447-509

 Table 7.3. 2023 CMAS Science Performance Indicator Cut Scores

Chapter 8: Reporting

8.1. Description of Scores

The CMAS reports provide information on student performance in terms of scale scores, performance levels, percentile ranks, and percent earned scores, as described below.

8.1.1. Scale Scores

A scale score is a conversion of a student's response pattern to a common scale that allows for a numerical comparison between students. Scale scores are particularly useful for comparing test scores over time and creating comparable scores when a test has multiple forms. Students taking CMAS mathematics and science receive overall scale scores, whereas students taking the CMAS ELA/CSLA assessments receive scale scores at the overall test and Reading claim levels. Science reports also provide separate scale scores for content standards and SEPs (referred to as reporting categories). The overall scale for each content area assessment ranges from 650 to 850, and the ELA Reading scale ranges from 110 to 190, as shown in Table 7.1 and Table 7.2 in the previous chapter. The science content standards scale score ranges from 400 to 600, although the graph displayed on the student reports ends at 550. Any student who earned a score greater than 550 still had their score written on the report but the diamond representing this performance would appear at the end of the graph at 550.

8.1.2. Performance Levels

Performance levels and their accompanying PLDs are reported at the overall assessment level. Students are classified into performance levels based on their scale score and the cut scores obtained from standard setting. The CMAS Mathematics and ELA assessments have five performance levels (*Did Not Yet Meet Expectations, Partially Met Expectations, Approached Expectations, Met Expectations,* and *Exceeded Expectations*), whereas CMAS Science has four performance levels (*Partially Met Expectations, Approached Expectations, Met Expectations,* and *Exceeded Expectations, Approached Expectations, Met Expectations,* and *Exceeded Expectations*). Students in the top two performance levels met or exceeded the expectations of the CAS and are considered on track for the next grade level in that content area.

8.1.3. Percentile Ranking

Percentile rankings are provided on student performance reports to indicate how the student performed compared with other students in the state. For example, a student with a percentile ranking of 70 performed better than 70% of students in Colorado. The percentile rankings are based on the overall scale score.

8.1.4. Percent Earned

To prevent incorrect interpretations and provide a metric that is more generally understood, student performance for subclaims and the Writing claim (ELA/CSLA) are reported as the percentage of points earned (i.e., the number of points a student earned out of the total number of points possible within a claim or subclaim). Unlike scale scores, the percent of points possible scores cannot be compared across years because individual items change from year to year and are not constructed to be comparable in difficulty at the claim, subclaim, or subscale level. Performance on different subclaims or subscales also cannot be compared within an administration because the number of items and the difficulty of the items within each claim, subclaim or subscale may not be the same.

The percent of points possible can be compared to aggregated state, district, and school performance. The student performance reports also include an indicator of how students who scored just above the *Met Expectations* cut score on the overall assessment performed on each category. This indicator gives similar information to the *Met Expectations* cuts.

8.2. Score Reports

Two types of score reports are provided: (1) the student-level Student Performance Report and (2) the aggregate reports at the school and district levels. Appendix D presents sample Student Performance Reports, and examples of each type of aggregate report are provided in the *CMAS* and *CoAlt Interpretive Guide to Assessment Reports*. For a detailed explanation of the information provided in all reports, refer to the *CMAS and CoAlt Interpretive Guide to Assessment Reports*.

https://www.cde.state.co.us/assessment/cmas_coalt_interpretiveguide_2023. CSLA assessments are parallel and comparable to the CMAS ELA assessments in scoring and reporting. Therefore, separate CSLA reports are not included (please refer to the CMAS ELA examples).

8.2.1. Student Performance Reports

The Student Performance Report provides information about the performance of a particular student. The student's scale score, performance level, percentile ranking, and percent of points possible scores are displayed on a two-page report, along with comparative information related to the student's school, district, and state performance. PLDs are also provided. In addition to the electronic versions made available to districts and schools, two copies of the Student Performance Report are printed and shipped to districts for distributing to parents/guardians and for maintaining locally.

8.2.2. Aggregate Reports

The following aggregate reports are produced at the school and/or district levels and provide summary information for a given school or district. They are provided electronically through PearsonAccess^{Next}, with access limited to authorized users. The participation report provides a comparison of the demographic characteristics of the tested students compared to all students eligible for testing. This information can assist districts and schools in determining how to interpret their aggregated results.

- Performance Level Summaries
- Content Standards Rosters
- Evidence Statement Analysis Reports (mathematics and ELA only)
- Item Analysis Report (science only)
- District Summary of Schools (district level only)
- District and School Participation Reports

Chapter 9: Test Results and Analysis

This chapter presents the test results and statistical analyses for the Spring 2023 CMAS assessments in mathematics, ELA/CSLA, and science.

9.1. Student Participation

Table 9.1 presents a breakdown of the number of students who took the assessment online compared with those who took accommodated forms, and Appendix E presents n-counts for various demographic characteristics for the students who took the CMAS assessments. Most students took the assessments online.

Content Area	Form	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8	Grade 11
Mathematics	Online	51,956	51,828	52,685	52,174	50,536	48,825	Oldde 11
Maulematics								_
	Spanish Online	1,188	1,084	617	346	372	335	_
	Paper	4,127	3,810	3,549	3,370	3,207	2,843	-
	Spanish Paper	93	39	14	5	12	12	_
	Text-to-Speech	12,430	11,426	10,405	5,211	4,089	3,620	_
	Spanish Text-to-Speech	649	530	355	138	125	130	
	Assistive Technology	7	11	6	7	11	6	_
	Total	57,371	56,772	56,871	55,902	54,138	52,021	_
ELA	Online	51,525	51,652	53,041	52,552	51,105	49,260	_
	Paper	4,201	3,854	3,604	3,038	2,771	2,489	_
	Assistive Technology	11	13	12	12	19	11	_
	Total	55,737	55,519	56,657	55,602	53,895	51,760	_
CSLA	Paper	1,440	1,180	_	_	_	_	_
Science	Online	_	_	43,155	_	_	45,087	29,886
	Spanish Online	-	_	203	_	_	189	131
	Paper	-	_	2,586	_	_	2,037	816
	Spanish Paper	-	_	10	_	_	12	1
	Text-to-Speech	-	_	10,175	_	_	3,499	855
	Spanish Text-to-Speech	_	_	299	_	_	123	78
	Total	_	_	56,428	_	_	50,947	31,767

Table 9.1. Student Participation N-Count by Form

9.2. Performance Results

Table 9.2 presents summary statistics for the overall scale scores, including the mean, standard deviation (SD), and median. The previous year's results are also included for comparison. The tables also include the coefficient alpha (see Section 11.1 for more information). Table 9.3 presents the performance level distributions and includes the distributions from last year's administration for comparison.

Appendix F presents the cumulative scale score distributions by grade, Appendix G displays the same information in graphical form, and Appendix H presents the summary statistics for the overall scale scores by demographic subgroup.

			202	23			20	22	
Content Area	Grade	Ν	Mean	SD	Median	N	Mean	SD	Median
Mathematics	3	57,382	738	39.5	739	56,482	737	39.3	738
	4	56,789	733	33.5	733	56,886	732	32.9	732
	5	56,896	737	35.2	736	57,423	736	35.1	734
	6	55,913	730	33.3	729	55,936	728	32.5	728
	7	54,148	731	28.1	729	55,283	730	27.7	728
	8	52,036	732	40.9	728	52,804	731	40.1	728
ELA	3	55,737	737	43.6	738	55,081	737	43.9	739
	4	55,519	742	36.9	744	55,746	740	36.4	744
	5	56,657	747	33.8	747	57,362	745	32.8	745
	6	55,602	743	33.0	744	55,960	742	34.1	743
	7	53,895	744	38.0	745	55,265	741	37.2	742
	8	51,760	741	40.7	742	52,727	742	40.9	743
ELA – Reading	3	55,737	145	17.7	145	55,081	145	17.7	145
	4	55,519	147	14.8	147	55,746	146	14.6	148
	5	56,657	149	13.6	149	57,362	148	13.2	148
	6	55,602	147	13.2	147	55,960	147	13.7	147
	7	53,895	148	15.1	148	55,265	146	14.8	146
	8	51,760	147	16.2	147	52,727	147	16.2	147
CSLA	3	1,440	724	27.3	725	1,301	726	26.9	726
	4	1,180	725	23.8	725	1,151	726	22.0	727
CSLA – Reading	3	1,440	140	10.2	139	1,301	140	10.5	139
-	4	1,180	140	9.3	140	1,151	141	8.3	140
Science	5	56,428	733	33.9	737	-	_	_	_
	8	50,947	731	33.0	735	-	_	_	_
	11	31,767	729	29.5	732	_	_	_	_

 Table 9.2. Scale Score Performance Summary

Note. The Spring 2022 CMAS Science assessment reported percentile ranks only.

				2023					2022		
Content Area	Grade	1	2	3	4	5	1	2	3	4	5
Mathematics	3	17.76	18.62	23.25	31.02	9.34	18.68	18.95	23.00	30.73	8.64
	4	17.38	23.48	26.46	29.75	2.93	18.05	24.05	27.20	28.28	2.43
	5	15.17	23.48	24.85	29.05	7.44	16.17	24.31	24.59	28.06	6.86
	6	19.93	24.86	26.97	24.17	4.07	20.33	26.02	27.37	22.84	3.44
	7	12.10	31.95	29.69	23.46	2.79	12.01	32.73	30.21	22.49	2.56
	8	23.74	23.27	20.32	26.98	5.68	23.60	23.05	20.97	27.42	4.96
ELA	3	22.19	17.03	20.91	34.92	4.95	22.14	16.56	20.55	35.86	4.88
	4	14.52	16.47	25.22	35.05	8.72	15.11	15.59	25.18	36.85	7.27
	5	7.93	18.51	25.80	41.11	6.65	8.21	19.34	27.05	40.62	4.79
	6	10.31	20.16	26.16	35.75	7.62	11.49	18.52	26.95	35.64	7.40
	7	13.23	17.52	24.24	30.35	14.67	15.09	18.93	24.21	29.46	12.30
	8	16.54	17.95	23.14	32.12	10.26	16.65	17.08	22.33	33.29	10.65
CSLA	3	19.93	29.65	31.74	16.81	1.88	18.45	27.98	33.74	17.60	2.23
	4	13.98	34.07	37.71	12.20	2.03	11.56	33.54	41.18	12.51	1.22

				2023			2022				
Content Area	Grade	1	2	3	4	5	1	2	3	4	5
Science	5	_	35.33	30.79	31.15	2.73	-	_	_	_	_
	8	_	38.53	30.18	30.76	0.53	_	_	_	_	_
	11	_	38.79	36.63	23.84	0.75	_	_	_	_	_

Note. The Spring 2022 CMAS Science assessment reported percentile ranks only. 1 = Did Not Yet Meet Expectations, 2 = Partially Met Expectations, 3 = Approached Expectations, 4 = Met Expectations, 5 = Exceeded Expectations. Percentages may not sum to 100 due to rounding.

Appendix I presents the summary statistics for points earned by subclaim. While the overall scale scores and Reading scale scores are comparable to results from previous administrations, the assessments are not designed to permit meaningful comparisons across percent earned scores, either within an assessment or across administration years. The difficulty of the items that make up each subscore can vary across subscores and from year to year, making it inappropriate to make inferences based on percent earned performance across subscores or based on subscore performance across years. The only percent earned subscore comparisons supported by the CMAS assessments are those comparing individual or group performance within one subclaim with the performance of other students or groups within the same subclaim and administration.

9.3. Classical Item Analysis

Appendix J presents the item-level classical statistics for each CMAS assessment, including the omit rate, *p*-value, item-total correlation, and the percentage of students earning each score point (CR items only).

Item difficulty is measured by the p-value, which is bounded by 0.0 and 1.0. The p-value for 1point items is the proportion of students who answered an item correctly and is calculated by dividing the number of students who got the item correct by the total number of students who answered it. For multiple-point items, the p-value is the average item score (i.e., the sum of student scores on an item divided by the total number of students who responded to the item) that is then put on a 0 to 1 scale by dividing the average item score by the maximum number of points for the item. A high p-value indicates that an item is easy (high proportion of students answered it correctly), whereas a low p-value indicates that an item is difficult. Easy and hard items are both necessary to include on an assessment to balance the test difficulty.

Item discrimination is represented by the item-total correlation (also known as the point-biserial correlation), is bounded by -1.0 and 1.0, and indicates how well an item discriminates, or distinguishes, between low-performing and high-performing students. The item-total correlation is based on the relationship between student performance on a specific item and performance on the entire test based on their test score. Students who do well on a test are expected to do well on a given item, and students who do not do well on a test are expected to not do well on a given item. This means that for a highly discriminating item, students who get the item correct will have a higher average test score than students who get the item incorrect. An item with a high positive item-total correlation discriminates between low-performing and high-performing students better than an item with an item-total correlation near zero. A negative item-total correlation indicates that low-performing students did better on that item than high-performing students.

9.4. Subclaim Correlations

The ELA/CSLA tests include Reading and Writing claim scores and five subclaim scores: Reading: Literary Text (RL), Reading: Informational Text (RI), Reading: Vocabulary (RV), Writing: Written Expression (WE), and Writing: Knowledge and Use of Language Conventions (WKL). The Reading score is a composite of RL, RI, and RV, and the Writing score is a composite of WE and WKL reported as a percentage of points earned. It comprises PCR items only. The operational test analyses were performed by evaluating the separate trait scores of WE and WKL. Some PCR items also include RL or RI points, but the reading points for those items were a duplicate of the WE score and were not included in calibrations.

The mathematics tests have four subclaim scores: Subclaim A: Major Content, Subclaim B: Additional & Supporting Content, Subclaim C: Expressing Mathematical Reasoning, and Subclaim D: Modeling & Application. The science test has four subclaim scores: Physical Science, Life Science, Earth Systems Science, and Science and Engineering Practices (SEPs).

One way to assess the internal structure of a test is through the evaluation of correlations among subscores, as presented in Table 9.4 – Table 9.8. For CMAS ELA/CSLA, these analyses were conducted between the Reading and Writing claim scores and the subclaims (RL, RI, RV, WE, and WKL). For CMAS Mathematics and Science, the analyses were conducted between the subclaim scores. There is evidence of unidimensionality if the components within a content area are strongly related to each other.

The intercorrelations for the mathematics and science subclaims were higher overall than the ELA/CSLA intercorrelations. Correlations between subclaims for mathematics and science ranged from 0.61 to 0.83, while for ELA/CSLA they ranged from 0.27 to 0.91. For CMAS ELA/CSLA, the two writing subclaims tended to have higher correlations with one another than they did with any of the reading subclaims. Correlations between the subclaims and the total test ranged from 0.63 to 0.96.

Grade	Subclaim	Subclaim B	Subclaim C	Subclaim D	Total Test
3	А	0.831	0.736	0.756	0.957
	В	_	0.697	0.722	0.901
	С	—	—	0.692	0.855
	D	-	—	-	0.860
4	А	0.744	0.791	0.732	0.960
	В	—	0.666	0.625	0.815
	С	—	—	0.702	0.894
	D	-	—	-	0.843
5	А	0.781	0.784	0.765	0.960
	В	_	0.699	0.714	0.866
	С	—	—	0.747	0.883
	D	-	—	-	0.873
6	А	0.712	0.768	0.748	0.943
	В	—	0.662	0.632	0.829
	С	—	—	0.729	0.891
	D	_	_	_	0.861

 Table 9.4. Correlations Between Subclaims—Mathematics

Grade	Subclaim	Subclaim B	Subclaim C	Subclaim D	Total Test
7	А	0.682	0.779	0.740	0.946
	В	_	0.648	0.610	0.797
	С	_	_	0.744	0.900
	D	_	_	_	0.860
8	А	0.715	0.794	0.768	0.957
	В	_	0.667	0.674	0.820
	С	—	—	0.745	0.889
	D	_	_	.–	0.877

Table 7	.5. Correia	nons Det			LLA	
Grade	Subclaim	RI	RV	WE	WKL	Total Test
3	RL	0.724	0.674	0.659	0.551	0.904
	RI	_	0.703	0.577	0.504	0.876
	RV	_	_	0.535	0.478	0.826
	WE	_	_	_	0.603	0.811
	WKL	_	_	_	-	0.673
4	RL	0.684	0.683	0.691	0.615	0.898
	RI	_	0.646	0.543	0.525	0.845
	RV	-	-	0.547	0.505	0.800
	WE	_	—	_	0.783	0.844
	WKL	_	-	_	-	0.766
5	RL	0.679	0.595	0.616	0.582	0.871
	RI	_	0.538	0.685	0.631	0.862
	RV	_	-	0.496	0.459	0.706
	WE	_	—	_	0.817	0.877
	WKL	_	-	_	-	0.806
6	RL	0.738	0.619	0.644	0.632	0.881
	RI	_	0.621	0.702	0.677	0.899
	RV	_	—	0.504	0.489	0.729
	WE	_	—	_	0.885	0.877
	WKL	_	-	_	-	0.841
7	RL	0.729	0.722	0.731	0.700	0.901
	RI	_	0.672	0.616	0.607	0.852
	RV	_	_	0.589	0.581	0.802
	WE	—	—	—	0.906	0.896
	WKL	_	_	_	_	0.863
8	RL	0.759	0.692	0.665	0.661	0.867
	RI	—	0.692	0.741	0.725	0.909
	RV	—	—	0.580	0.578	0.781
	WE	—	—	—	0.943	0.909
	WKL	_	—	—	_	0.890

Table 9.5. Correlations Between Subclaims—ELA

Note. RL = Reading: Literary Text, RI = Reading: Informational Text, RV = Reading: Vocabulary, WE = Writing: Written Expression, WKL = Writing: Knowledge and Use of Language Conventions.

Grade	Subclaim	RI	RV	WE	WKL	Total Test	
3	RL	0.564	0.735	0.689	0.500	0.895	
	RI	_	0.584	0.463	0.334	0.722	
	RV	_	_	0.561	0.442	0.824	
	WE	_	_	_	0.626	0.866	
	WKL	_	_	_	-	0.668	
4	RL	0.534	0.649	0.706	0.490	0.898	
	RI	_	0.499	0.424	0.268	0.685	
	RV	_	_	0.503	0.294	0.730	
	WE	—	—	—	0.565	0.880	
	WKL	—	_	_	_	0.626	

Table 9.6. Correlations Between Subclaims—CSLA

Note. RL = Reading: Literary Text, RI = Reading: Informational Text, RV = Reading: Vocabulary, WE = Writing: Written Expression, WKL = Writing: Knowledge and Use of Language Conventions.

Content Area	Grade	Correlation
ELA	3	0.697
	4	0.691
	5	0.718
	6	0.727
	7	0.730
	8	0.754
CSLA	3	0.678
	4	0.671

 Table 9.8. Correlations Between Subclaims—Science

~ .	~	Life	Earth and								
Grade	Subclaim	Science	Space Science	Total Test							
5	Physical Science	0.693	0.784	0.928							
	Life Science	—	0.698	0.844							
	Earth and Space Science	_	_	0.931							
8	Physical Science	0.812	0.766	0.933							
	Life Science	-	0.768	0.939							
	Earth and Space Science	-	-	0.900							
11	Physical Science	0.760	0.751	0.930							
	Life Science	-	0.726	0.906							
	Earth and Space Science	-	—	0.896							

Note. For Grade 5, the subclaim is Physical Science/Life Science.

Chapter 10: Calibration, Equating, and Scaling

Item response theory (IRT) was used to develop, calibrate, equate, and scale the CMAS assessments. All test analyses including calibration, scaling, and item model fit were accomplished within the IRT framework. The CMAS Mathematics and ELA scales were equated to the previous CMAS (i.e., PARCC) base scale. The calibration of the first operational administration determined the base scale for CSLA and CMAS Science.

Calibration is the process of estimating the parameters (such as item difficulty) for each item on an assessment so that all items are placed on a common scale. To maintain the same performance standards across different administrations of a particular test, it is necessary for each administration of the test to be of comparable difficulty. It is not fair to compare students to a common standard if the overall difficulty of the forms changes from year to year. Maintaining test form difficulty across administrations is achieved through equating. Equating adjusts for differences in overall test difficulty of test forms so that the scores resulting from two different administrations can be considered interchangeable.

Equating and scaling typically occur in sequence. First, equating is used to adjust for differences in test difficulty so resulting estimates of student proficiency (i.e., equated raw scores, theta estimates) are on a common metric. The equated estimates of proficiency are then converted to scale scores for reporting purposes.

Calibration, equating, and scaling analyses for the operational and field test items were as follows for the Spring 2023 administration. The entire process was completed for each CMAS assessment, and all steps were independently replicated by at least two members of the Pearson psychometrics team to ensure accuracy.

- CMAS Mathematics
 - Operational items
 - All items had parameter estimates already equated to the base scale
 - Estimated student abilities using ISE (Chien & Shin, 2012)
 - Embedded field test items
 - Used IRTPRO control files and IDM to obtain item parameter estimates of the operational and field test items
 - Used STUIRT to scale the field test items to the operational scale using the online operational items as the anchor set
 - Calculated item fit statistics and plotted expected vs. observed IRFs for each field test item
- CMAS ELA
 - Operational items
 - Obtained the online operational item parameter estimates using IRTPRO (Vector Psychometric Group, 2022) control files and incomplete data matrix (IDM)
 - Evaluated the consistency of scoring and stability of the anchor items
 - Scaled the 2023 operational items to the operational scale using STUIRT (Kim & Kolen, 2004)

- Calculated item fit statistics and plotted expected vs. observed item response functions (IRFs) for each operational item
- Estimated student abilities using ISE (Chien & Shin, 2012)
- Embedded field test items
 - Obtained item parameter estimates of the operational and field test items using IRTPRO control files and IDM
 - Scaled the field test items to the operational scale using STUIRT and the online operational items as the anchor set
 - Calculated item fit statistics and plotted expected vs. observed IRFs for each field test item
- CSLA
 - o Operational items
 - Obtained the non-anchor operational item parameter estimates using Winsteps (Linacre, 2011) control files and IDM
 - Evaluated the stability of the anchor items to obtain the final anchor set
 - Scale the 2023 non-anchor items to the operational scale using the final anchor set in Winsteps
 - Obtained item difficulty values, step deviation values, and item fit values for all items
 - Estimated student abilities using Winsteps
 - Embedded field test items
 - Scale the field test item parameter estimates to the operational scale by fixing the item parameter estimates of the operational items using Winsteps control files and IDM
 - Obtained field test item difficulty values, step deviation values, and item fit values for each field test item

CMAS Science

- Operational items
 - Obtained the online operational item parameter estimates using IRTPRO (Vector Psychometric Group, 2022) control files and IDM
 - Evaluated the consistency of scoring and stability of the anchor items
 - Scaled the 2022 items and cut scores to the operational scale using STUIRT (Kim & Kolen, 2004)
 - Calculated item fit statistics and plotted expected vs. observed item response functions (IRFs) for each operational item
 - Estimated student abilities using ISE (Chien & Shin, 2012)
- Embedded field test items
 - Obtained item parameter estimates of the operational and field test items using IRTPRO control files and IDM
 - Scale the field test items to the operational scale using STUIRT and the online operational items as the anchor set
 - Calculated item fit statistics and plotted expected vs. observed IRFs for each field test item

10.1. IRT Models

The two-parameter logistic (2PL; Birnbaum, 1968) and generalized partial credit (GPC; Muraki, 1992) models were applied to CMAS Mathematics and ELA; the 2PL, three-parameter logistic (3PL; Birnbaum, 1968), and GPC models were applied to CMAS Science; and the Rasch partial credit model (RPCM) was applied to CSLA. The 2PL model uses two item parameters to relate the probability of person *i* correctly answering a dichotomously scored item *j*:

$$P_{ij}(\theta) = \frac{1}{1 + \exp\left[-Da_j(\theta_i - b_j)\right]}$$

where *D* is set equal to 1 when defined on the logistic scale, as IRTPRO parameterizes all models. The item discrimination parameter is a_j , and the item difficulty parameter is b_j . The 3PL model adds an item parameter:

$$P_{ij}(\theta) = c_j + \frac{1 - c_j}{1 + \exp\left[-Da_j(\theta_i - b_j)\right]}$$

where c_j is the item pseudo-guessing parameter. The GPC model has three item parameters to relate the probability of person *i* responding in the *x*-th category to a polytomous scored item *j*:

$$P_{ij}(\theta) = \frac{\exp\left[\sum_{\nu=0}^{x} Da_j (\theta_i - b_j + d_{j\nu})\right]}{\sum_{k=0}^{M_i} \exp\left[\sum_{\nu=0}^{k} Da_j (\theta_i - b_j + d_{j\nu})\right]}, x = 0, 1, ..., M_j$$

where all parameters are as they were before, and d_{jv} is the category parameter for category v of item j and M_j is the maximum score on item j. To put the parameters on the normal ogive metric, the a_j is then divided by 1.7.

The RPCM used for CSLA is an extension of the Rasch one-parameter IRT model attributed to Georg Rasch (1966), as extended by Wright and Stone (1979), Masters (1982), and Wright and Masters (1982). The RPCM is a mathematical measurement model with a single item parameter relating a student's performance on a given item involving m+1 score categories. The probability of student n scoring x on m steps of item i is a function of the student's proficiency level, θ_n (also referred to as "ability"), and the step difficulties, δ_{ij} , of the m steps in question i as follows:

$$P_{xni} = \frac{exp\sum_{j=0}^{x} (\theta_n - \delta_{ij})}{\sum_{k=0}^{m_i} exp\sum_{j=0}^{k} (\theta_n - \delta_{ij})}, x = 0, 1, \dots m_i$$

10.2. Item Response Curves (IRCs) and Item Characteristic Curves (ICCs)

The IRFs of the 2PL, 3PL, and GPC IRT models relate student ability to the probability of observing a particular item response given the item's characteristics, whereas the item characteristic function (ICF) relates student ability to the expected student score. The graphical representation of the IRF and ICF are the item response curves (IRCs) and item characteristic curves (ICCs), respectively. The IRF and ICF for dichotomous items are equal, but the IRC and ICF are different for polytomous items.

For example, consider Figure 10.1 that depicts a 2PL item that falls at approximately 0.85 on the ability (horizontal) scale. When a student answers an item at the same level as their ability, they have a roughly 50% probability of answering the item correctly. Another way of expressing this is that in a group of 100 students, all of whom have an ability of 0.85, about 50% of them would be expected to answer the item correctly. A student whose ability is above 0.85 would have a higher probability of getting the item right, while a student whose ability is below 0.85 would have a lower probability of getting the item right.

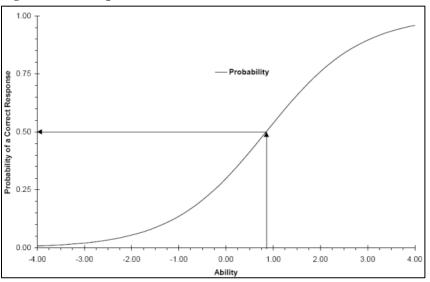


Figure 10.1. Sample 2PL Item Characteristic Curve (ICC)

Figure 10.2 shows IRCs of obtaining a wrong answer or a right answer. The dotted-line curve (j=0) shows the probability of getting a score of 0, while the solid-line curve (j=1) shows the probability of getting a score of 1. The point at which the two curves cross indicates the transition point on the ability scale where the most likely response changes from a 0 to a 1. At this intersection, the probability of answering the item correctly is 50%.

Figure 10.2. Sample 2PL Item Response Curves (IRCs)

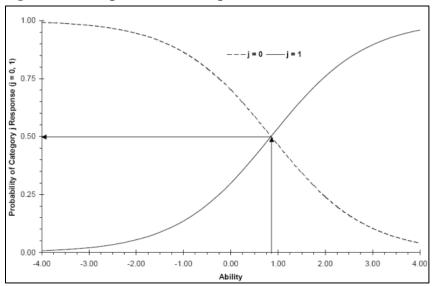


Figure 10.3 shows IRCs of obtaining each score category for a polytomously scored item. The dotted-line curve (j=0) shows the probability of getting a score of 0. Those of very low ability (e.g., below -2) are likely to be in this category. Those receiving a 1 (partial credit) tend to fall in the middle range of abilities (the thick, solid-line curve, j=1). The final, thin, solid-line curve (j=2) represents the probability for those receiving scores of 2 (completely correct). Very highability students are more likely to be in this category, but there are still some of average and low ability who can get full credit for the item.

The points at which the lines cross have a similar interpretation as that for dichotomous items. For abilities to the left of (or less than) the point at which the j=0 line crosses the j=1 line, indicated by the left arrow, the probability is greatest for a 0 response. To the right of (or above) this point and up to the point at which the j=1 and j=2 lines cross (marked by the right arrow), the most likely response is a 1. For abilities to the right of this point, the most likely response is a 2. The probability of scoring a 1 response (j=1) declines in both directions as ability decreases to the low extreme and increases to the high extreme. These points may be thought of as the difficulties of crossing the *thresholds* between categories.

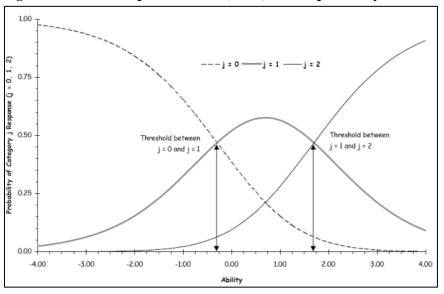


Figure 10.3. Item Response Curves (IRCs) for a 2-point Polytomous Item

10.3. Data Preparation

Prior to any analyses, several steps were completed as preparation:

- Verify the data file containing student responses and apply the exclusion rules.
- Complete a traditional item analysis (TRIAN) and adjudication, where applicable, on all items.
- Create incomplete data matrices (IDMs).

A TRIAN of all SR items was conducted prior to calibration. The purpose of this review is to use classical statistics to identify potential test administration and score issues. Items with one or more of the following characteristics are flagged:

- *P*-value <0.15
- Item-total score correlation < 0.10
- Incorrect option selected by more high-performing students (top 33%) than the keyed response
- Distractor *p*-value $\ge 40\%$
- Distractor-total score correlation > 0
- One or more score points earned by less than 5% of students

A list of flagged items is communicated to the assessment specialists for review and confirmation that the correct key has been applied. Figure 10.4 presents a sample TRIAN report.

Item	Form	Key	Corr.	*	PV<15	A%	*	B%	*	С%	*	D%	*	Omit%	Ncount
1	ALL	В	0.49			11		46		24		17		3	6578
2	ALL	D	0.46			17		12		9		59		2	6560
3	ALL	В	0.40			16		50		16		12		6	6572
4	ALL	D	0.47			5		9		21		63		2	6605
5	ALL	С	0.40			3		19		51		26		2	6643
6	ALL	С	0.46			12		5		78		4		2	6614
7	ALL	А	0.30			33		36		15		13		3	6643
8	ALL	С	0.43			21		35		35		6		3	6646

Figure 10.4. Sample Key Check (TRIAN) Report

All TE items and ELA SR items are put through an adjudication process. For each item, the frequency distribution of responses that are scored correctly is created, along with the frequency distribution of responses that are scored as incorrect. Assessment specialists review each response in the frequency reports and indicate whether the response should be scored as correct. The assessment specialists' indications are then cross-referenced with how the responses are scored to confirm that scoring is accurate. Figure 10.5 presents a sample adjudication spreadsheet.

Figure 10.5. Sample Adjudication Spreadsheet

Item ID	Func.	Item Response	Scored Response	Freq. Count	% of Total Freq.	Date 1 st Reviewer	1 st Reviewer Initials	Issue? (Y/N)	Description of Issue	Date 2 nd Reviewer	2 nd Reviewer Initials	Issue? (Y/N)	Description of Issue
Item1	Func.	A_A1:B_B2	2	28339	59	Keviewei	muais	(1/1)	01 15500	Keviewei	mitiais	(1/1)	01 15500
ltem1		A_A1	1	35	0								
ltem1			1	3782	8								
ltem1		A_A1:C_C2	1	4803	10								
ltem1		A_A1:D_D2	1	970	2								
ltem1			0	56	0								
ltem1		A_A2	0	1	0								
ltem1		B_B1	0	12	0								
ltem1		B_B1:A_A2	0	464	1								
ltem1		B_B1:B_B2	0	1038	2								
ltem1		B_B1:C_C2	0	844	2								
ltem1		B_B1:D_D2	0	405	1								
ltem1		B_B2	0	4	0								

Item ID	Func.	Item Response	Scored Response	Freq. Count	% of Total Freq.	Date 1 st Reviewer	1 st Reviewer Initials	Issue? (Y/N)	Description of Issue	Date 2 nd Reviewer	2 nd Reviewer Initials	Issue? (Y/N)	Description of Issue
ltem1		C_C1	0	10	0								
ltem1		C_C1:A_A2	0	501	1								
ltem1		C_C1:B_B2	0	841	2								
ltem1		C_C1:C_C2	0	582	1								
ltem1		C_C1:D_D2	0	1510	3								
ltem1		C_C2	0	1	0								
ltem1		D_D1	0	10	0								
ltem1		D_D1:A_A2	0	652	1								

10.4. Checking Model Assumptions

It is important to evaluate how the IRT models applied for CMAS fit the data because reported scale scores are derived from theta estimated under the IRT models. Two major assumptions are investigated: unidimensionality and item fit.

10.4.1. Unidimensionality (Factor Analysis)

An assumption under the IRT models is unidimensionality, that there is exactly one latent variable (e.g., mathematics proficiency) that an instrument intends to measure. This is a more traditional and strict definition of the unidimensionality assumption. On the other hand, essential unidimensionality, in which there is one dominant latent variable with some minor latent variable(s), is a more practically applicable assumption (Stout, 1990). A factor analysis was performed on the item response data for the CMAS assessments to analyze the number of dimensions the assessments appear to be measuring. Given that unidimensional IRT models are used for calibration and scaling, it is important that there be evidence to support their use.

Appendix K presents the scree plots for the Spring 2023 administration. For most of the assessments, one factor explained most of the variance, which supports the use of a unidimensional IRT model, although the ELA/CSLA scree plots do suggest that Reading and Writing are distinct subscores. The loadings for Factor 2 for ELA were all much higher for the PCR trait items than any other items. This may indicate the influence of a writing construct that is separate from what is measured by the reading items.

10.4.2. Item Fit

Appendix M presents the item fit results. (The results are not included if a test is pre-equated.) Item fit refers to how well the data fit the IRT calibration model, and it is evaluated using Yen's (1981) Q_1 statistic that allows for the evaluation of an item's IRT model fit to observed student performance. In the calculations of Q_1 , the observed and expected (based on the model) frequencies were compared at 10 intervals, or deciles, along the scale. Yen's Q_1 fit statistic was computed for each item using the following formula:

$$Q_{1_i} = \sum_{j=1}^{10} \frac{N_{ij} (O_{ij} - E_{ij})^2}{E_{ij} (1 - E_{ij})}$$

where N_{ij} is the number of students in interval *j* for item *I*, and O_{ij} and E_{ij} are the observed and expected proportions of students in interval *j* for item *i*. The Q_1 statistic was then transformed so that items with different degrees of freedom can have comparable fit statistics:

$$Z_{Q_{1_i}} = \frac{Q_{1_i} - df}{\sqrt{2df}}$$

where *df* is the degree of freedom for the statistic (df = 10-the number of parameters estimated; df = 7 for SR items in a 3PL model). If $Z_{Q_{1i}}$ is greater than Z_{crit} , the item is flagged for poor model fit:

$$Z_{crit} = \frac{N_i * 4}{1500}$$

where N_i is the sample size.

10.5. Calibration

Calibration refers to the estimation of item parameters in the IRT framework, which places items and students on a common scale. To obtain item parameter estimates for CMAS ELA, the GPC model was applied to the items. IRTPRO was used for all calibrations, and all operational item parameters were estimated in a single calibration (i.e., concurrent calibration) for each assessment. For CSLA, the RPCM was applied to all items to obtain item parameter estimates. All operational items within a grade were also calibrated concurrently. Winsteps was used for all CSLA calibrations.

PCR items were calibrated at the (unweighted) trait score level rather than as aggregated scores. To account for potential local dependence between the two trait scores, the item response matrix was modified before operational calibrations. For each PCR item, one of the two trait scores for each student was randomly selected, and the non-selected trait score was then removed from the dataset and treated as missing for calibration. The resulting item response dataset, known as a "Moulder" matrix, contained roughly half as many observations for each PCR trait score as for the non-PCR items. However, the datasets still contained an adequate number of student responses to conduct the calibrations. Due to the small population of students taking the CSLA assessment, trait scores were not removed from the data when conducting calibrations for CSLA.

For each CMAS Science assessment, a concurrent calibration was conducted to obtain item parameters for all the operational items.

10.6. Equating

Equating is used to place new forms onto the operational base scale. Equating of the operational test forms involves adjusting for differences in the difficulty of forms, both within and across assessment administrations, to ensure that students taking one form of a test are neither advantaged nor disadvantaged when compared to students taking a different form. Each time a new form is constructed, equating is used to allow scores on the new form to be comparable to scores on the previous form. If the IRT models fit the data and the model assumptions are met, calibration of test items places both items and students on a scale that is independent of any sample of students up to a linear transformation. Equating is used to determine and apply a scale transformation that allows for meaningful comparisons of student performance across different forms or administrations of the test.

To maintain comparability with prior administrations, CMAS Mathematics and ELA item parameter estimates were equated to the established base scale used in 2017, and the CSLA item parameter estimates were equated to the Spring 2016 CSLA base scale. The 2023 scale was chosen to be the base scale for CMAS Science due to concerns about the validity of the 2022 administration since it was the first time students had seen items aligned to the new standards. The Spring 2022 items were equated to the 2023 scale so that all items from the bank would be available for future test construction.

10.6.1. Mathematics

10.6.1.1. Pre-Equating Design

The Spring 2023 CMAS Mathematics assessments were equated to the base scales using an item pre-equating design, meaning all items had already been administered, with item parameters already estimated and placed onto the base scale. Students were scored based on these previously banked item parameter estimates. All operational items on these forms had been previously calibrated and equated to the base scale.⁶ The forms were subsequently scored using these existing item parameters rather than performing a new calibration and equating. To help ensure the stability of item parameter estimates across administration, items were positioned as closely as possible to their positions when they were calibrated. To ensure that the assumptions of pre-equating were met, a post-equating check was performed using anchor sets identified during test construction. The results of this check were compared with the pre-equated results during a post-equating check.

10.6.1.2. Post-Equating Check

Because pre-equating relies on stronger assumptions than post-equating, an additional postequating analysis was conducted and compared with the pre-equated results for the CMAS mathematics assessments in 2022. (A post-equating check was not conducted in 2023 because the 2023 forms were identical.) Large discrepancies between the two could suggest that preequating assumptions have not been met. Conversely, similarity between pre- and post-equated item parameters suggests that the pre-equated item parameters are appropriate for students taking the current form. The post-equating check followed the same procedures as those of the other post-equated assessments, using an anchor set for each assessment that was identified during test construction and that met the operational anchor test specifications.

Results of the post-equating check from 2022 suggested that pre- and post-equated item parameters were quite similar. Appendix L compares the 2022 pre-equated and post-equated test characteristic curves (TCCs) for each assessment. The results show that post-equated scores would have been highly similar to the pre-equated results. The high degree of similarity across the entire scale score range for each grade suggests that pre-equating assumptions were met and that the pre-equated item parameters were appropriate for this administration.

⁶ Please refer to previous versions of the CMAS technical reports for information on these calibration and equating procedures, located on the CDE website at <u>https://www.cde.state.co.us/assessment/cmas_coalt_techreport</u>.

10.6.2. ELA

The Spring 2023 CMAS ELA assessments were calibrated and post-equated to the base scale following the procedures described below. The ELA assessments have historically been post-equated. All post-equating analyses were conducted using a representative sample of students that was evaluated based on the following demographics to ensure that the expected population demographic distributions were met: gender, ethnicity/race, economic disadvantage, language proficiency, students with disabilities, and district setting.

A common items approach was used for equating the operational forms. Forms from adjacent administrations contain a set of items that are the same across the two administrations. This set of items represents the blueprint in terms of content and represents roughly 40% of a full form.

10.6.2.1. Consistency of Constructed-Response Scoring Check

Because the ELA assessments include a high percentage of CR items, the anchor sets include CR items to be more reflective of the construct being measured. For accurate equating, it is important that the items in the anchor sets be consistently scored across administrations. With SR items, scoring is the same each time the item is administered (e.g., 'A' is always scored as the correct answer) such that changes in item performance across administrations can be solely attributed to changes in student performance. With CR items, scoring is done by human raters, so it is important that scoring be monitored both within an administration and across administrations to maintain consistent scoring throughout. Such procedures were in place, including consistency in training and the use of validity papers throughout scoring.

As an additional check, the consistency of the CR scoring was examined prior to equating via the rescoring of a subset of the previous year's papers to remove any items that exhibited statistical drift in scoring characteristics so that the accuracy of the equating was not jeopardized. If a CR item appeared to lack consistency across the administrations, considerations were given to removing the item from the anchor set.

10.6.2.2. Stability Check

The item parameter stability check for the anchor items was conducted using classical item analyses, scatterplots of item parameter estimates, and ICC comparison. For the ICC comparison, old and new ICCs were compared using the *z*-score approach based on D^2 (Wells et al., 2014), as outlined below:

- 1. Obtain the theoretically weighted estimated posterior theta distribution using 31 quadrature points (-5 to 5).
- 2. Compute the slope and intercept constants using the Stocking and Lord (1993) method with all anchor items in the linking set.
- 3. Place the original anchor item parameter estimates onto the baseline scale by applying the constants obtained in Step 2.
- 4. For each anchor item, calculate D^2 between the ICCs based on old (x) and new (y) parameters at each point in this theta distribution:

$$D_i^2 = \sum_{k=1}^{k} \left[P_{ix}(\theta_k) - P_{iy}(\theta_k) \right]^2 \bullet g(\theta_k)$$

where i = item, x = old form, y = new form, k = theta quadrature point, and g = theoretically weighted posterior theta distribution.

- 5. Compute the mean and standard deviation of the D^2 values.
- 6. Flag the items with a D^2 more than 2 standard deviations above the mean.

10.6.2.3. Calibration and Anchor Set Evaluation

The initial calibration results were reviewed for problematic item parameter estimates, and fit plots were examined to detect items with poor model–data fit. Review of anchor item stability analyses resulted in dropping one to four items from the anchor set, depending on grade. The final anchor sets for ELA represented between 39% and 47% of the unweighted total test points. The online and paper versions were constructed to be parallel, and item parameter estimates were assumed to be the same. The information provided for the item statistics and IRT curves are based on the online estimates.

10.6.2.4. Final Anchor Sets

Items flagged from the stability check and consistency of CR scoring check were examined, and consideration was given to the impact of flagged item(s) on the content representativeness of the resulting anchor set. A flag alone was not the sole criteria for removing an item from the linking set; it was important to also make sure that the remaining anchor set continued to be representative of the overall content and structure of the test.

10.6.2.5. Equating Method

Using the item parameter estimates for the anchor set from the item bank and the current administration, the computer program STUIRT was used to obtain the transformation constants to place the current administration's items on the operational scale using the Stocking and Lord (1983) method. The scale transformation constants, Slope A and Intercept B, were applied to the item parameter estimates to place the new test items (new, N) on the operational scale (old, O) (Kolen & Brennan, 2004), as follows:

$$\alpha_{jO} = \alpha_{jN} / A$$
$$b_{jO} = A * b_{jN} + B$$
$$d_{jvO} = A * d_{jvN}$$

10.6.2.6. Paper Forms

Online and paper items were developed to be parallel to the online items. Operational paper items deemed identical to the operational online items were assumed to have the same item parameter estimates. Paper items were fixed to their online counterparts' item parameter estimates. This process produced item parameter estimates for all paper items.

10.6.3. CSLA

A common items approach was used to equate the CSLA operational forms. Forms from adjacent administrations contained a set of items that were the same across the two administrations (i.e., anchor items). Anchor items were operational items already equated to the base scale. The anchor items were placed in the same positions across all test forms within a grade and anchored the scale between the new test form and the base scale. This set of items represents the blueprint in terms of content and represents roughly 30% of a full form.

10.6.3.1. Stability Check

The stability check for the CSLA anchor items was conducted using classical item analysis, scatter plots of item difficulty, and displacement estimates from Winsteps. Items were flagged if the absolute value of the displacement estimate was greater than or equal to 0.30.

10.6.3.2. Final Anchor Sets

Items flagged from the stability check were examined, and consideration was given to the impact of flagged item(s) on the content representativeness of the resulting anchor set. A flag alone was not the sole criteria for removing an item from the linking set. It was important to also make sure that the remaining anchor set continues to be representative of the overall content and structure of the test. The final anchor sets for Grades 3 and 4 represented 42% and 36%, respectively, of the unweighted total test points.

10.6.3.3. Equating Method

To obtain equated Rasch parameter estimates for the Spring 2023 assessments, anchor item parameter estimates for each grade-level assessment were fixed to their previously equated item parameter estimates before calibrating the remaining non-anchor operational items on that assessment. This method placed the non-anchor operational items on the same scale as the anchor items.

10.6.4. Science

The Spring 2023 CMAS Science assessments were calibrated and the 2022 item parameters and cut scores were post-equated to the 2023 scale using a representative sample of students that was evaluated based on the following demographics to ensure that the expected population demographic distributions were met: gender, ethnicity/race, economic disadvantage, language proficiency, students with disabilities, and district setting. A common items approach was used for equating the operational forms. Forms from adjacent administrations contain a set of items that are the same across the two administrations. This set of items represents the blueprint in terms of content and represents roughly 30% of a full form.

10.6.4.1. Consistency of Constructed-Response Scoring Check

Because the Science assessments include a high percentage of CR items, the anchor sets include CR items to be more reflective of the construct being measured. For accurate equating, it is important that the items in the anchor sets be consistently scored across administrations. With SR items, scoring is the same each time the item is administered (e.g., 'A' is always scored as the correct answer) such that changes in item performance across administrations can be solely attributed to changes in student performance. With CR items, scoring is done by human raters, so it is important that scoring be monitored both within an administration and across administrations to maintain consistent scoring throughout. Such procedures were in place, including consistency in training and the use of validity papers throughout scoring.

As an additional check, the consistency of the CR scoring was examined prior to equating via the rescoring of a subset of the previous year's papers to remove any items that exhibited statistical drift in scoring characteristics so that the accuracy of the equating was not jeopardized. If a CR item appeared to lack consistency across the administrations, considerations were given to removing the item from the anchor set.

10.6.4.2. Stability Check

The item parameter stability check for the anchor items was conducted using classical item analyses, scatterplots of item parameter estimates, and ICC comparison. For the ICC comparison, old and new ICCs were compared using the *z*-score approach based on D^2 (Wells et al., 2014), as outlined below:

- 1. Obtain the theoretically weighted estimated posterior theta distribution using 31 quadrature points (-5 to 5).
- 2. Compute the slope and intercept constants using the Stocking and Lord (1993) method with all anchor items in the linking set.
- 3. Place the original anchor item parameter estimates onto the baseline scale by applying the constants obtained in Step 2.
- 4. For each anchor item, calculate D^2 between the ICCs based on old (x) and new (y) parameters at each point in this theta distribution:

$$D_i^2 = \sum_{k=1}^{k} \left[P_{ix}(\theta_k) - P_{iy}(\theta_k) \right]^2 \bullet g(\theta_k)$$

where i = item, x = old form, y = new form, k = theta quadrature point, and g = theoretically weighted posterior theta distribution.

- 5. Compute the mean and standard deviation of the D^2 values.
- 6. Flag the items with a D^2 more than 2 standard deviations above the mean.

10.6.4.3. Calibration and Anchor Set Evaluation

The initial calibration results were reviewed for problematic item parameter estimates, and fit plots were examined to detect items with poor model–data fit. Review of anchor item stability analyses resulted in dropping one to four items from the anchor set, depending on grade. The final anchor sets for Science represented between 25% and 45% of the unweighted total test points. The online and paper versions were constructed to be parallel, and item parameter estimates were assumed to be the same. The information provided for the item statistics and IRT curves are based on the online estimates.

10.6.4.4. Final Anchor Sets

Items flagged from the stability check and consistency of CR scoring check were examined, and consideration was given to the impact of flagged item(s) on the content representativeness of the resulting anchor set. A flag alone was not the sole criteria for removing an item from the linking set; it was important to also make sure that the remaining anchor set continued to be representative of the overall content and structure of the test.

10.6.4.5. Equating Method

Using the item parameter estimates for the anchor set from the item bank and the current administration, the computer program STUIRT was used to obtain the transformation constants to place the current administration's items on the operational scale using the Stocking and Lord (1983) method. The scale transformation constants, Slope A and Intercept B, were applied to the item parameter estimates to place the 2022 test items (new, N) on the operational (2023) scale (old, O) (Kolen & Brennan, 2004), as follows:

$$\alpha_{j0} = \alpha_{jN}/A$$
$$b_{j0} = A * b_{jN} + B$$
$$d_{jv0} = A * d_{jvN}$$

10.6.4.6. Paper Forms

Paper items were developed to be parallel to the online items. Operational paper items deemed identical to the operational online items were assumed to have the same item parameter estimates. Paper items were fixed to their online counterparts' item parameter estimates. This process produced item parameter estimates for all paper items.

10.7. Field Test Equating

The field test equating process is similar to that of operational equating, except that the anchor items are the operational items. This process places the field test item parameter estimates onto the operational base scale. All field test items are calibrated concurrently, with the exception of the ELA PCR items.

A minimum of 3,000 student responses for each field tested PCR item per trait is sampled for scoring and calibration. Due to possible dependency between the two trait scores for each PCR item, the field test items on each ELA assessment went through two calibrations. The first calibration included all field test items except the Writing Knowledge Language and Conventions (WKL) trait scores, and the second calibration included all field test items except the Writing Written Expression (WE) trait scores (with all operational items serving as anchor items in both cases).

The estimates from each calibration were then equated to the base scale separately following the same procedures as the operational equating. Finally, the two sets of equated field test parameters were combined by adding the equated field test WKL trait estimates to the equated estimates from the first calibration. This "double-calibration" method allowed for separate calibration of the field test trait scores while reducing the number of field test responses that needed to be scored per trait. Using a "Moulder" calibration method (as in the operational item calibration) would have meant using scoring resources to score traits that were never actually used for calibration or scoring.

10.8. Ability Estimates

10.8.1. Mathematics, ELA, and Science

Student ability was estimated using IRT pattern scoring based on student responses and the operational item parameter estimates for all students who met the relevant attemptedness criterion. Student ability was estimated at the overall test level, as well as for Reading on the ELA assessment. Estimates were obtained via the maximum likelihood method (MLE) applied within the ISE software program. Pattern scores use the student's individual item response pattern (overall or Reading claim) to determine their ability estimate, which may lead to different ability estimates for the same raw score.

10.8.2. CSLA

After the item parameter estimates were obtained for the CSLA operational items, student abilities were estimated for each grade-level assessment by conducting an anchored calibration of the operational items' item parameter estimates. Student abilities were calculated for the overall test and for Reading. To obtain student ability estimates for the overall test, all the operational items were included in the anchored calibration. To obtain student ability estimates for Reading, only the operational items representing the specific claim were included in the anchored calibration. The calibrations included the weighting of the PCR WE trait score. Student ability estimates were obtained via the joint maximum likelihood method (JMLE) applied within Winsteps.

10.9. Overall and Subscale Scale Scores

For CMAS Mathematics and ELA/CSLA, student ability estimates for the overall test were transformed to scale scores ranging from 650 to 850 using the same scaling transformations as the prior year's administrations. For CMAS Science, the student ability estimates for the overall test were transformed to scale scores ranging from 650 to 850 using the scaling transformations determined from standard setting. The student ability estimates for the subscores for CMAS Science were transformed to scale scores ranging from 400 to 600. For ELA/CSLA, the student ability estimates for Reading were transformed to scale scores ranging from 110 to 190. The following linear transformation was used to convert examinee theta estimates into scale scores where *A* and *B* are unique scaling constants for each subject/grade:

 $SS = A^*\theta + B$

After the scale scores were calculated, the lowest obtainable scale score (LOSS) and highest obtainable scale score (HOSS) were applied. LOSS and HOSS were set to 650 and 850, respectively, for the overall test scale. For the Reading scale, LOSS and HOSS were set to 110 and 190. For the subscores of CMAS Science, LOSS and HOSS were set to 400 and 600.

10.10. Item-Level IRT Statistics

Appendix M presents the item parameter estimates for each grade. (The results are not included if a test is pre-equated.) The item numbers are merely identifiers and do not reflect the sequence of items as they were presented to students. The "Item Type" uses the coding of SR for selected-response, XI for technology-enhanced, and CR for constructed-response items. The "Model" refers to the IRT model under which the item was estimated (2PL, 3PL, GPC, or RPCM). The "A" column shows the item parameter estimate for discrimination, "B" for difficulty, and "D1" through "D7" for GPC or RPCM category threshold estimates. Not all item parameters apply to each item. For example, there are no category threshold estimates for 2PL items.

The last column of the ELA and science tables reflects whether an item was flagged for misfit based on Q1 for those calibrated assessments. Several items in each grade were flagged for misfit. Misfit plots for all items were reviewed, and misfit statistics were compared with data from the previous administration. Based on these reviews, no additional items were removed due to misfit flags. The last two columns for CSLA reflect the infit and outfit statistics generated from Winsteps. Fit values were reviewed, and no items were removed due to misfit.

10.11. IRT Curves

Appendix N presents the test characteristic curves (TCCs), test information curves (TICs), and CSEM curves for both the overall scale scores and the Reading scale scores. The curves for CMAS Mathematics are from 2022 because the forms were reused for 2023 and item parameters were held the same. The 2023 CMAS ELA TCCs matched those from 2018 in terms of shape and position. The 2023 TCCs were reviewed across the distribution and at the cuts to ensure the match between years. Colorado's established maximum TCC difference of 0.05 was also maintained between the 2018 and 2023 forms. The TCCs are provided in terms of expected percent correct rather than expected raw score. Along with the curves, each cut score for a given grade is indicated with a red vertical line, as are the cut scores for Reading. On the overall scale score TCCs for science, mathematics, and ELA, the vertical line at a scale score of 750 corresponds to the cut for *Met Expectations* for each assessment.

10.12. Comparability of Online and Paper Forms

The scale score distributions for students taking the online and paper CMAS Mathematics, Science, and ELA assessments were examined using a matched samples approach to investigate the extent to which the online and paper forms produced comparable scores. Multiple variables were used for determining the matched groups to result in "equal" groups of online and paper students. The matching variables included sex, race/ethnicity, free and reduced lunch status, language proficiency, IEP, and district setting, plus the prior year's overall test score.

Because science is not assessed in consecutive grade levels, the prior year's score did not come from science. Rather, the Grade 4 mathematics score was used for Grade 5 science and the Grade 7 mathematics score was used for the Grade 8 science assessment. There were an insufficient (<1,000) number of students who took the Grade 11 CMAS Science assessment on paper to complete a comparability and mode analysis.

Scale score distributions of CMAS scores between the matched samples were compared to estimate the mode effect. To quantify the differences between the two distributions, the effect size of the differences between the two distributions was calculated as Cohen's d (Cohen, 1977) using the mean scale score from each group and the pooled standard deviation:

$$d = \frac{M_{group1} - M_{group2}}{SD_{pooled}}$$

Suggested interpretations of Cohen's *d* are as follows:

- 0.2 = a small effect size
- 0.5 = a medium effect size
- 0.8 = a large effect size

A threshold for a possible mode effect was set to an effect size of 0.1 or greater and a matched sample size of at least 1,000 students. The effect size was calculated for the mathematics and ELA assessments in each grade, and for science in Grades 5 and 8. The results were presented to CDE who made the final decision on whether to make an adjustment for mode differences for each assessment. Table 10.1 presents the mode effect sizes from the Spring 2023 administration.

Based on evaluation of the effect sizes, mode adjustments were made for ELA Grades 3 and 5–7 and mathematics Grades 7 and 8. For assessments where an adjustment was deemed necessary, scores from the paper form were adjusted using a linear transformation to match the mean and standard deviation of the online form. The conversion was applied to the overall scores. For ELA, the conversion was also applied to the Reading score. For the paper-based mathematics assessments from the prior administration, mode adjustments from that prior administration were applied to those forms.

	Ma	thematics		ELA		cience
Grade	Ν	Effect Size	Ν	Effect Size	Ν	Effect Size
3	4,484	0.00	4,186	-0.15	_	_
4	3,316	0.02	3,478	-0.01	_	—
5	3,185	0.06	3,255	0.10	1,788	0.04
6	3,000	-0.08	2,751	-0.19	_	—
7	2,873	-0.10	2,481	-0.10	_	_
8	2,691	-0.12	2,270	-0.08	1,454	-0.02
11	—	—	_	_	N/A	N/A

 Table 10.1. Online vs. Paper Comparability Mode Effect Sizes

Note. N/A = not applicable. Comparability analyses were not conducted for science Grade 11 because the n-count was less than 1,000.

Chapter 11: Reliability

The *Standards for Educational and Psychological Testing* (AERA et al., 2014) refer to reliability as the "consistency of scores across replications of a testing procedure" (p. 33). A reliable test produces stable scores; very similar score distributions would result if the test were administered repeatedly under similar conditions to the same students without memory or fatigue affecting the scores. The level of reliability/precision of scores has implications for validity. In other words, scores must be consistent and precise enough to be useful for intended purposes. If scores are to be meaningful, tests should produce stable scores if the same group of students were to take the same test repeatedly without any fatigue or memory of the test. The range of certainty around the score should also be small enough to support educational decisions. Reliability for the CMAS assessments is evaluated with the following analyses:

- Internal consistency (coefficient alpha)
- Standard error of measurement (SEM)
- Conditional standard error of measurement (CSEM)
- Decision consistent and accuracy
- Inter-rater agreement

11.1. Internal Consistency (Coefficient Alpha)

Within the framework of classical test theory, an observed test score is defined as the sum of a student's true score and error (X = T + E, where X = the observed score, T = the true score, and E = error). A true score is considered the student's true standing on the measure, while the error score reflects a random error component. Thus, error is the discrepancy between a student's observed and true score. Internal consistency is typically measured via correlations among the items on an assessment and provides an indication of how much the items measure the same general construct. High reliability of test scores implies that the test items within a subclaim are measuring a single construct, which is a necessary condition for validity when the intention is to measure a single construct.

The reliability coefficient of a measure is the proportion of variance in observed scores accounted for by the variance in true scores. The coefficient can be interpreted as the degree to which scores remain consistent over parallel forms of an assessment (Ferguson & Takane, 1989; Crocker & Algina, 1986). In the internal consistency method used to estimate reliability for the CMAS assessments, a single form is administered to the same group of students to determine whether students respond consistently across the items within a test. A basic estimate of internal consistency reliability is Cronbach's coefficient alpha statistic (Cronbach, 1951). Coefficient alpha is equivalent to the average split-half correlation based on all possible divisions of a test into two halves. Coefficient alpha can be used on any combination of dichotomous and polytomous test items and is computed as follows:

$$\alpha = \frac{n}{n-1} \left(1 - \frac{\sum_{j=1}^{n} S_j^2}{S_X^2} \right)$$

where *n* is the number of items, S_j^2 is the variance of students' scores on item *j*, and S_x^2 is the variance of the total-test scores.

Coefficient alpha ranges from 0.0 to 1.0, where higher values indicate a greater proportion of observed score variance. Two factors affect estimates of internal consistency: test length and homogeneity of items. The longer the test, the more observed score variance is likely to be true score variance. The more similar the items, the more likely students will respond consistently across items within the test.

Table 11.1 – Table 11.4 present the coefficient alpha results overall and by subclaim for each content area. Appendix H presents the coefficient alpha estimates by demographic subgroup. The internal consistency values for the overall test ranged from 0.89 to 0.93. Given the differences in length, it is expected that the coefficient alpha for the overall test will be higher than that of the subscales.

The overall test reliability does not correspond directly with the overall student scale scores, as those are based on IRT pattern scoring. However, the overall estimates do provide evidence of unidimensionality of the assessments. Furthermore, the subgroup reliabilities were consistent for the various demographic subgroups, except for those based on language proficiency. The reliability of the tests tended to be lower for students identified as non-English proficient or limited English proficient.

Grade	Overall	Subclaim A	Subclaim B	Subclaim C	Subclaim D
3	0.92	0.87	0.79	0.67	0.67
4	0.91	0.88	0.63	0.73	0.51
5	0.93	0.88	0.72	0.74	0.66
6	0.91	0.84	0.63	0.75	0.63
7	0.90	0.82	0.57	0.76	0.56
8	0.91	0.85	0.43	0.78	0.68

Table 11.1. Coefficient Alpha by Subclaim—Mathematics

Table 11.2. Coefficient Alpha by Subclaim—ELA

	0 1	Reading: Literary	Reading: Informational	Reading:	Writing: Written	Writing: Knowledge and Use of Language		XX7 */*
Grade	Overall	Text	Text	Vocabulary	Expression	Conventions	Reading	Writing
3	0.90	0.80	0.76	0.68	0.64	0.75	0.90	0.67
4	0.89	0.72	0.72	0.64	0.48	0.75	0.87	0.74
5	0.88	0.78	0.69	0.44	0.54	0.75	0.86	0.75
6	0.90	0.80	0.70	0.55	0.81	0.80	0.87	0.80
7	0.90	0.78	0.73	0.66	0.81	0.83	0.89	0.82
8	0.90	0.78	0.79	0.60	0.72	0.85	0.90	0.84

		Reading: Literary	Reading: Informational	Reading:	Writing: Written	Writing: Knowledge and Use of Language		
Grade	Overall	Text	Text	Vocabulary	Expression	Conventions	Reading	Writing
3	0.88	0.75	0.61	0.73	0.67	0.78	0.86	0.81
4	0.86	0.75	0.57	0.63	0.58	0.74	0.84	0.76

Table 11.3. Coefficient Alpha by Subclaim—CSLA

Table 11.4. Coefficient Alpha by Subclaim—Science

Grade	Overall	Physical Science	Life Science	Earth and Space Science
5	0.89	0.79	0.60	0.76
8	0.92	0.81	0.82	0.75
11	0.90	0.77	0.74	0.72

Note. For Grade 5, the subclaim is Physical Science/Life Science.

11.2. Standard Error of Measurement (SEM)

The SEM is another measure of reliability. This statistic uses the standard deviation of test scores along with a reliability coefficient (e.g., coefficient alpha) to estimate the number of score points that a student's test score would be expected to vary if the student was tested multiple times with equivalent forms of the assessment. It is calculated as follows:

$$SEM = s_x \sqrt{1 - p_{XX}}$$

where S_x is the standard deviation of test scores, and P_{XX} is the reliability coefficient.

There is an inverse relationship between the reliability coefficient and SEM: the higher the reliability, the lower the SEM. Table 11.5 – Table 11.8 present the SEM results by subclaim for each content area. The classical SEM estimate is not reported for the overall test scale scores and the Reading subscore, as those scores are based on IRT pattern scoring rather than the sum of item scores.

Table 11.5. SEM by Subclaim—Mathematics

	J			
Grade	Subclaim A	Subclaim B	Subclaim C	Subclaim D
3	1.91	1.15	1.53	1.32
4	2.15	1.10	1.70	1.87
5	2.08	1.23	1.37	1.47
6	1.93	1.48	1.53	1.46
7	1.98	1.23	1.36	1.45
8	2.04	1.42	1.12	1.34

	Reading: Literary	Reading: Informational	Reading:	Writing: Written	Writing: Knowledge and Use of Language	XX 7 *.*
Grade	Text	Text	Vocabulary	Expression	Conventions	Writing
3	1.87	1.82	1.61	1.99	0.54	2.33
4	2.60	2.28	1.57	2.34	0.49	2.07
5	2.12	1.87	1.51	2.56	0.57	2.38
6	2.13	2.86	1.57	1.71	1.01	2.41
7	1.91	2.39	1.63	2.47	0.76	3.12
8	2.04	2.30	1.70	2.85	0.65	2.79

Table 11.6. SEM by Subclaim—ELA

Table 11.7. SEM by Subclaim—CSLA

	Reading: Literary	Reading: Informational	Reading:	Writing: Written	Writing: Knowledge and Use of Language	
Grade	Text	Text	Vocabulary	Expression	Conventions	Writing
3	2.01	1.77	1.51	0.89	0.76	1.25
4	2.21	2.00	1.40	1.16	0.93	1.56

Table 11.8. SEM by Subclaim—Science

	Physical	Life	Earth and Space
Grade	Science	Science	Science
5	1.95	1.67	2.08
8	1.93	2.03	1.84
11	1.90	1.70	1.67

Note. For Grade 5, the subclaim is Physical Science/Life Science.

11.3. Conditional Standard Error of Measurement (CSEM)

While the SEM provides an estimate of precision for an assessment, conditional standard error of measurement (CSEM) gives an indication of how measurement error varies across the score scale. While coefficient alpha is reported as a measure of internal consistency of the items that each scale comprises, IRT-based CSEM is a more appropriate measure of the measurement error associated with these scale scores because the reported scale scores for both the overall test and Reading are determined using IRT pattern scoring.

The CSEM is defined as the standard deviation of observed scores given a particular true score and is estimated within the IRT framework as the inverse of the test information function. Plots of test information curves (TICs) and CSEM across the score scale range are provided in Appendix N for both the overall scale scores and Reading scores.

Each scale score has a CSEM estimate that indicates what the most likely range of scores would be for students receiving that score if they tested multiple times. The CMAS assessments measure more accurately at a scale score near the middle of the scale than at the ends of the scale. During test construction, CSEMs are reviewed to ensure that they are minimized around the performance level cut scores.

11.4. Decision Consistency and Accuracy

The CMAS Mathematics and ELA/CSLA scales are divided into five performance levels that a student is placed in based on their scale score: *Did Not Yet Meet Expectations, Partially Met Expectations, Approached Expectations, Met Expectations,* and *Exceeded Expectations.* The consistency of a decision refers to the extent to which the same classification would result if a student were to take two parallel forms of the same assessment. However, since test-retest data are not available, psychometric models can be used to estimate the decision consistency based on test scores from a single administration. The accuracy of a decision refers to the agreement between a student's true score classification if a student's true score could be known.

Procedures developed by Livingston and Lewis (1995) were used to estimate the consistency and accuracy of performance level classifications. For the overall test, consistency and accuracy estimates, along with PChance (i.e., the probability of a consistent classification due to chance) and Cohen's Kappa (κ) coefficient (Cohen, 1960), are calculated as follows:

$$K = \frac{P - P_c}{1 - P_c}$$

where P is the probability of consistent classification, and P_c is the probability of consistent classification by chance (Lee et al., 2000).

Table 11.9 presents the kappa interpretations. Table 11.10 presents the decision consistency and accuracy results, and Table 11.11 and Table 11.12 present the consistency and accuracy estimates at each cut score.

Value of Kappa	Strength of Agreement
< 0.20	Poor
0.21 - 0.40	Fair
0.41 - 0.60	Moderate
0.61 - 0.80	Good
0.81 - 1.00	Very Good

Table 11.9. Kappa Values

Content Area	Grade	Accuracy	Consistency	PChance	Kappa
Mathematics	3	0.73	0.63	0.22	0.52
	4	0.75	0.65	0.24	0.54
	5	0.76	0.67	0.23	0.57
	6	0.74	0.64	0.23	0.53
	7	0.75	0.65	0.26	0.53
	8	0.72	0.62	0.23	0.51
ELA	3	0.72	0.63	0.25	0.50
	4	0.70	0.59	0.24	0.47
	5	0.72	0.62	0.28	0.48
	6	0.73	0.63	0.25	0.51
	7	0.70	0.59	0.22	0.48
	8	0.70	0.60	0.23	0.48
Science	5	0.77	0.69	0.32	0.54
	8	0.82	0.75	0.34	0.62
	11	0.76	0.69	0.34	0.53
CSLA	3	0.72	0.62	0.26	0.49
	4	0.72	0.62	0.29	0.46

Table 11.10. Decision Consistency and Accuracy Estimates

Table 11.11. Accuracy of Cut Scores

Content Area	Grade	Partially Met Expectations Cut	Approached Expectations Cut	Met Expectations Cut	Exceeded Expectations Cut
Mathematics	3	0.95	0.92	0.91	0.89
	4	0.94	0.91	0.91	0.96
	5	0.95	0.92	0.92	0.91
	6	0.94	0.91	0.92	0.95
	7	0.95	0.90	0.92	0.97
	8	0.92	0.90	0.92	0.93
ELA	3	0.93	0.91	0.90	0.94
	4	0.95	0.91	0.89	0.89
	5	0.96	0.91	0.89	0.92
	6	0.96	0.91	0.90	0.91
	7	0.95	0.91	0.90	0.83
	8	0.94	0.91	0.90	0.88
Science	5	_	0.92	0.87	0.97
	8	_	0.93	0.90	0.99
	11	-	0.92	0.85	0.99
CSLA	3	0.93	0.89	0.92	0.98
	4	0.94	0.88	0.92	0.98

Content Area	Grade	Partially Met Expectations Cut	Approached Expectations Cut	<i>Met Expectations</i> Cut	Exceeded Expectations Cut
Mathematics	3	0.92	0.89	0.88	0.87
	4	0.92	0.87	0.88	0.96
	5	0.93	0.89	0.89	0.90
	6	0.91	0.87	0.88	0.94
	7	0.92	0.86	0.89	0.96
	8	0.89	0.87	0.88	0.92
ELA	3	0.90	0.87	0.87	0.93
	4	0.93	0.88	0.85	0.87
	5	0.94	0.87	0.85	0.91
	6	0.94	0.88	0.86	0.89
	7	0.93	0.88	0.86	0.81
	8	0.91	0.87	0.86	0.86
Science	5	_	0.89	0.82	0.97
	8	—	0.90	0.85	0.99
	11	_	0.89	0.80	0.99
CSLA	3	0.90	0.85	0.88	0.97
	4	0.91	0.83	0.89	0.97

 Table 11.12. Consistency of Cut Scores

11.5. Inter-Rater Agreement

For CR items, inter-rater agreement examines the extent to which students would obtain the same score if scored by different scorers. For each operational item, 10% of the responses were scored by a second reader, which allowed for rater agreement statistics to be calculated. 0 presents the inter-rater agreement statistics for the CR operational items (i.e., the percentage of operational items with exact agreement, adjacent agreement, and non-adjacent agreement). The target exact plus adjacent agreement rate is 95% for all items. The following agreement rates were calculated for each CR item:

- Exact agreement, which represents exact agreement between the two raters
- Adjacent agreement, which represents adjacent agreement between the two raters (i.e., a difference of 1 score points)
- Non-adjacent agreement, which represents a difference of more than 1 score point between the two raters

For the PCR items, the following additional analyses were also conducted:

- Quadratic kappa (Kappa), $KAPPA = \frac{E([X_1 Y_1]^2)}{E([X_1 Y_2]^2)}$, which is a comparison between the mean square error of rating pairs that are supposed to agree (X_1, Y_1) and those that are unrelated (X_1, Y_2)
- Standardized mean differences (MD): $\bar{Z} = \frac{|\bar{X}_{R_1} \bar{X}_{R_2}|}{\left|\frac{sd_{R_1}^2 + sd_{R_2}^2}{2}\right|}$

• Correlations (CORR):
$$\bar{Z} = \frac{|\bar{X}_{R_1} - \bar{X}_{R_2}|}{\sqrt{\frac{sd_{R_1}^2 + sd_{R_2}^2}{2}}}$$

Chapter 12: Validity

"Validity refers to the degree to which evidence and theory support the interpretations of test scores for proposed uses of tests" (AERA et al., 2014). As such, it is not the CMAS assessments that are validated but rather the interpretations of the scores. The purpose of the CMAS assessments is to provide information about a student's level of mastery of the Colorado Academic Standards (CAS). Mastery of the standards in the elementary and middle school grades indicates that a student is on track to being college and career ready at each grade level. In support of these ends, this technical report has described processes that were implemented throughout the CMAS assessment cycle with validity and fairness considerations in mind. This chapter describes the various sources of validity evidence for CMAS as outlined in the *Standards for Educational and Psychological Testing* (AERA et al., 2014), often referencing other chapters and sections of this report.

12.1. Evidence Based on Test Content

Evidence based on the content of the assessment is supported by the degree of correspondence between test items and content standards. The degree to which the test measures what it claims to measure is known as construct validity. The CMAS assessments adhere to the principles of evidence-centered design, in which the standards to be measured (i.e., the CAS) are identified, and the performance a student needs to achieve to meet those standards is delineated in the evidence statements (ESs) or evidence outcomes (EOs). Test items are reviewed for adherence to universal design principles to maximize the participation of the widest possible range of students.

12.1.1. Test Development Process

The item development process is driven by targets at the ES or EO level. Before developing items, Pearson uses target spreadsheets to create an internal item development plan (IDP) aligned with the expectations of test design and with consideration of attrition rates at committee review and data review. The validity of a state assessment relies on the methodology that frames the development and design of the assessment. In support of that claim, Pearson upholds these considerations as the cornerstones of the CMAS item and test development:

- The item development process ensures that the mathematics and ELA/CSLA items align to the ESs and EOs and that the science items align to the EOs.
- IDPs were designed to produce and maintain a robust item bank; items are written to address the scope of measured standards, grade-level difficulties, and cognitive complexity.
- The item and test development processes promote the equivalency of the online and paper-based assessments.
- Items were developed with the intention of being administered on multiple testing platforms.
- Item and test development processes are compliant with industry standards.

Content is also aligned through the articulation of performance in the performance level descriptors (PLDs). At the policy level, the PLDs include policy claims about the educational achievement of students who attain a particular performance level, and a broad description of the grade-level knowledge, skills, and practices that students performing at a particular achievement level are able to demonstrate. Those policy-level descriptors are the foundation for the subject-and grade-specific PLDs, which, along with the ES or EO framework, guide the development of the items and tasks.

Gathering construct validity evidence for the CMAS assessments is embedded in the process by which the test content is developed and validated. At each step in the test development process, educators, assessment experts, and bias and sensitivity experts were involved in review of text, items, and tasks for accuracy, appropriateness, and freedom from bias, as described in Chapter 3: Item Development. In the early stages of development, Pearson conducted research studies to validate the item and task development approach. One such study focused on student task interaction and was designed to collect data on students' experience with the assessment tasks and technological functionalities, as well as the amount of time needed to answer each task. Pearson also conducted a rubric choice study that compared the functioning of two rubrics developed to score the ELA PCR tasks. Quantitative and qualitative evidence was collected to support the use of a condensed or expanded trait scoring rubric.

An important consideration when constructing test forms is recognition of items that may introduce construct-irrelevant variance. Such items should not be included on test forms to help ensure fairness to all student subgroups. Data reviews and content and bias reviews are held with Colorado educators to identify any issues with items before they are included on an operational test form. Accommodations were also made available based on individual need documented in the student's approved IEP or 504 Plan, as described in Section 5.5.

The CMAS operational test forms were carefully constructed to align with the test blueprints and specifications based on the CAS. Chapter 4: Test Construction provides details on the construction of the operational assessment forms, which demonstrates that all test forms for mathematics and ELA adhered to the same test design used in previous years or were previously used operationally. Science was a new assessment administered in Spring 2022; as such, validity evidence based on test content for science will continue to be documented in future iterations of this technical report as the test continues to be developed.

12.1.2. Alignment Study

An independent alignment study was conducted by the Human Resources Research Organization (HumRRO) in 2023 to provide further evidence to support the claim that the content of the CMAS Science test items matches the intended content as specified in the 2020 CAS (Revivo et al., 2023). For the study, three panels (one per grade) of Colorado educators were convened to review the alignment between the CMAS Science items and the CAS. Every effort was made to recruit panels consisting of teachers reflecting the various demographic subgroups and regions across Colorado. HumRRO applied alignment criteria they developed that was approved by CDE. This procedure required the panelists to (a) provide cognitive complexity ratings for each item, (b) indicate the CAS best aligned to each item, and (c) indicate if each item aligned to an SEP or CCC.

Overall, the results of the study provide validity evidence to support the claim that the content of the CMAS Science test items matches the intended content as specified in the CAS and test blueprint. Across all grades, items represented the intended content and reflected the multidimensional nature of the CAS, although only Grade 5 items reflected appropriate levels of cognitive complexity whereas Grades 8 and 11 items narrowly missed the cognitive complexity criterion requirements. The results of the alignment study have been considered during the item development process for subsequent administrations.

12.2. Evidence Based on Internal Structure

Analyses of the internal structure of a test typically involve studies of the relationships among test items and/or test components (i.e., subclaims) in the interest of establishing the degree to which the items or components appear to reflect the construct on which a test score interpretation is based (AERA et al., 2014, p. 16). The term *construct* refers to the characteristics that a test is intended to measure; in the case of the CMAS assessments, the characteristics of interest are the knowledge and skills defined by the test blueprints.

The CMAS assessments provide a full summative test score and a Reading score, as well as percent of points earned scores for Writing and mathematics, ELA, and science subclaims. The goal of reporting at this level is to provide criterion-referenced data to assess the strengths and weaknesses of a student's achievement in specific components of each content area compared with other students taking the same assessment (for overall and subclaim scores) and students who took the assessment in prior years (for overall scores). This information can then be used for a variety of purposes as indicated in Section 1.4. Evidence based on internal structure is provided in the following sections of this technical report:

- Subclaim correlations (Section 9.4)
- Internal consistency (Section 11.1)
- Factor analysis (Section 10.4.1)

12.3. Evidence Based on Relationships to Other Variables

Correlations were calculated between the mathematics, ELA, and science assessments, as shown in Table 12.1. (The samples include only students with valid scores on both assessments.) These scores may be expected to have lower correlations if the tests are measuring distinct constructs. The correlations between the scale scores of the CMAS assessments ranged from 0.75 to 0.82; these values are also very close to the 2018 values.

	ELA & I	Mathematics	ELA & Science		Mathematics & Science	
Grade	Ν	Correlation	Ν	Correlation	Ν	Correlation
3	55,537	0.78	_	_	_	_
4	55,290	0.77	_	_	_	_
5	56,377	0.75	55,619	0.81	55,771	0.78
6	55,413	0.77	_	_	_	_
7	53,606	0.77	_	_	_	_
8	51,376	0.77	50,050	0.82	50,236	0.78

Table 12.1. Correlations Between CMAS Scale Scores

12.4. Evidence Based on Response Processes

As noted in the *Standards for Educational and Psychological Testing* (AERA et al., 2014), additional support for a particular score interpretation or use can be provided by theoretical and empirical evidence indicating that students are using the intended response processes when responding to the items in a test. This type of evidence may be gathered from interacting with students to understand what processes underlie their item responses. Evidence may also be derived from feedback provided by test proctors/teachers involved in the administration of the test and raters involved in the scoring of CR items. Evidence may also be gathered by evaluating the correct and incorrect responses to short CR items (e.g., items requiring a few words to respond) or by evaluating the response patterns to multi-part items.

Prior to the 2016 administration, the PARCC consortium undertook research investigating the quality of the items, tasks, and stimuli, focusing on whether students interact with the online items/tasks as intended through cognitive labs. In these studies, students were asked to narrate how they interact with an item and answer questions about their experience with the item and online platform.

Cognitive labs were conducted for CMAS Science with Colorado students in May 2013. Students attempted a variety of item types on the TestNav platform and were asked to "thinkaloud" as they worked through each item. Students showed a high degree of facility in responding to the items, and only a small bit of supplemental training was speculated to be needed to acquaint them with the tools and navigation of the TestNav interface. Surveys were given to the students after completion of the assessment, which included a question that asked them to indicate whether they preferred paper or computer-based tests. Most students indicated that they preferred the computer-based version, and many commented that it had been an enjoyable experience. For a full report on the cognitive labs, see the *2013–2014 CMAS Technical Report*.

As new items are developed, the field test responses are reviewed. Sample responses to the CR items are also reviewed by educator committees during rangefinding to ensure that the rubrics make sense and provide example scored responses. During the data review meeting, item statistics are reviewed to ensure that the students are responding to items in the expected way. Low item item-total correlations and aberrant response distributions can all indicate that there are unexpected issues with either the correct or incorrect responses. Items where the correct response is not accurate or there are distractor responses that are technically correct can be identified and rejected at this step. During the adjudication step, incorrect responses to fill-in-the-blank items are also reviewed to make sure that no technically correct responses are excluded. These include entry issues such as extra spaces or unexpected responses such as adding an unnecessary decimal (e.g., 3.0 rather than 3).

12.5. Evidence Based on the Consequences of Testing

Because state tests are administered "with the expectation that some benefit will be realized from the intended use of the scores" (AERA et al., 2014), validity evidence supporting the use and interpretation of CMAS results may be investigated as a consequence of testing. One intended consequence of testing is that more students will demonstrate mastery over the CAS over time, as evidenced by more students achieving in the top performance levels, if the data are used appropriately to make improvements in programming at the school and district levels.

Table 12.2 presents the percentage of students who have reached proficiency on the CMAS assessments over the years. The CMAS Mathematics and ELA assessments have been administered to Colorado students since Spring 2015, and CSLA has been administered since Spring 2016. While CMAS Science has been administered since Spring 2014, it is not included in the table because a new CMAS science assessment based on new standards was administered for the first time in Spring 2022.

As shown in the table, student performance has improved since the first administration with the exception of Grade 6 mathematics and Grade 3 CSLA. The decrease in 2021 of the percent of students meeting or exceeding in the required grades was expected given the learning disruptions caused by COVID-19 in 2020 and 2021. The pandemic's continued impact on student learning opportunities should be considered when interpreting the 2022 performance results. There have also been changes in the available assessments by grade for Grades 7 and 8 mathematics across administrations, so comparisons across years for those grades are not included.

		First Administration	2019	2021	2022	2023	% Change, First	% Change, First	% Change, First	% Change, First
		% <i>Met or</i>	%Met or	%Met or	%Met or	%Met or	Administration	Administration	Administration	Administration
Content Area	Grade	Exceeded	Exceeded	Exceeded	Exceeded	Exceeded	to 2019	to 2021	to 2022	to 2023
Mathematics	3	36.7	41.0	_	39.4	40.4	4.3	_	2.7	3.7
	4	30.2	33.6	28.5	30.7	32.7	3.4	-1.7	0.5	2.5
	5	30.1	35.7	_	34.9	36.5	5.6	_	4.8	6.4
	6	31.7	29.5	24.1	26.3	28.2	-2.2	-7.6	-5.4	-3.5
ELA	3	38.2	41.3	39.1	40.7	39.9	3.1	0.9	2.5	1.7
	4	41.7	48.0	_	44.1	43.8	6.3	_	2.4	2.1
	5	40.5	48.4	47.2	45.4	47.8	7.9	6.7	4.9	7.3
	6	39.1	43.6	_	43.0	43.4	4.5	_	3.9	4.3
	7	41.0	46.5	42.6	41.8	45.0	5.5	1.6	0.8	4.0
	8	40.9	46.9	_	43.9	42.4	5.9	_	3.0	1.5
CSLA	3	22.0	27.5	15.4	19.8	18.7	5.5	-6.6	-2.2	-3.3
	4	13.9	19.1	_	13.7	14.2	5.2	_	-0.2	0.3
Science	5	33.9	-	_	-	33.9	_	_	_	_
	8	31.3	—	—	_	31.3	_	_	_	_
	11	24.6	—	—	—	24.6	_	_	—	_

 Table 12.2. Student Performance Over Time

Note. The first administration for mathematics and ELA was Spring 2015, the first administration for which scale scores and performance levels were generated for science was Spring 2023, and the first administration for CSLA was Spring 2016. Performance results are not included for the Spring 2021 mathematics, ELA, and CSLA opt-in grades.

12.6. Fairness

Fairness is an important aspect of validity, as it is critical that an assessment provide accurate measurements for **all** students. To that end, the following fairness considerations were woven into the development and administration of the CMAS assessments:

- Sample items that provide the opportunity for teachers and students to become familiar with the test design and scoring of the assessments before experiencing the items on an operational test (Section 5.3)
- Universal design principles that are adhered to during the test development process with the goal of avoiding construct-irrelevant aspects of the assessment that could impact student performance (Chapter 3: Item Development)
- Items are reviewed by educators for potential issues which could impact the performance of student groups prior to field testing (Chapter 3: Item Development).
- Differential item functioning (DIF) analyses to identify any items that appear to be unfairly favoring one subgroup over another. All items which show DIF are reviewed by educators for potential bias in the item. (Section 3.7)
- Accessibility tools and accommodations to allow students to fully demonstrate their content knowledge without being hindered by non-construct related elements (Sections 4.2 and 5.5)

Participation information must also be reviewed and taken into consideration thoughtfully when interpreting the district and school results. As participation rates vary across student, school, and district groups, challenges with interpreting results increase. Depending on the specific school or district, some student groups may have been overrepresented in the results and others may have been underrepresented. Students may have also experienced ongoing reduced, disrupted, and/or adjusted learning opportunities during the school year. Due to these factors and many more challenges experienced due to COVID-19, districts and schools should be cautious when interpreting results because the data may not support all cross-state comparisons and historical uses when participation rates are low and/or representativeness is limited.

References

- Achieve. (2019). A framework to evaluate cognitive complexity in science assessments. https://files.eric.ed.gov/fulltext/ED603610.pdf
- Allen, N. L., Carlson, J. E., & Zelenak, C. A. (1999). *The NAEP 1996 technical report (NCES 1999–452)*. National Center for Education Statistics, US Department of Education.
- American Educational Research Association (AERA), American Psychological Association (APA), & National Council on Measurement in Education (NCME). (2014). *Standards for educational and psychological testing*. AERA.
- Beimers, J. N., Way, W. D., McClarty, K. L., & Miles, J. A. (2012, January). Evidence based standard setting: Establishing cut scores by integrating research evidence with expert content judgments. Pearson.
- Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In F. M. Lord & M. R. Novick (Eds.), *Statistical theories of mental test scores* (pp. 392– 479). Addison-Wesley.
- Chien, M., & Shin, D. (2012). *IRT score estimation program*, V1.3 [computer program]. Pearson.
- Cizek, G. J., Bunch, M. B., & Koons, H. (2004). Setting performance standards: Contemporary methods. *Educational Measurement: Issues and Practice*, 23(4), 31–31.
- Cohen, J. (1960). A coefficient of agreement for nominal scales. *Educational and Psychological Measurement*, 20(1), 37–47.
- Cohen, J. (1977). Statistical power analysis for the behavioral sciences. Academic Press.
- Colorado Department of Education (CDE). (2016). Colorado Spanish Language Arts (CSLA) standard setting report. CDE and Pearson.
- Crocker, L., & Algina, J. (1986). *Introduction to classical and modern test theory*. Harcourt Brace Jovanovich College Publishers.
- Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. *Psychometrika*, *16*, 297–334.
- Davis, L. L., & Moyer, E. L. (2015). *Performance level setting technical report*. <u>https://parcc-assessment.org/wp-content/uploads/2017/12/PARCC_PLS_TechReport_011316_toPARCC-final.pdf</u>
- Dorans, N. J., & Holland, P. W. (1992). DIF detection and description: Mantel-Haenszel and standardization. In P. W. Holland & H. Wainer (Eds.), *Differential item functioning: Theory and practice* (pp. 35–66). Erlbaum.
- Ferguson, G. A., & Takane, Y. (1989). *Statistical analysis in psychology and education* (6th ed.). McGraw-Hill.

- Ferrara, S., Perie, M., & Johnson, E. (2008). Matching the judgmental task with standard setting panelist expertise: The item-descriptor (ID) matching method. *Journal of Applied Testing Technology*, 9(1), 1–22.
- Kane, M. (1994). Validating the performance standards associated with passing scores. *Review of Educational Research*, 64(3), 425–461.
- Kim, S., & Kolen, M. (2004). STUIRT [computer program]. The University of Iowa.
- Kolen, M. J. & Brennan, R. L. (2004). *Test equating: Methods and practices*. (2nd ed.). Springer-Verlag.
- Lee, W., Hanson, B. A., & Brennan, R. L. (2000, October). Procedures for computing classification consistency and accuracy indices with multiple categories. (ACT Research Report Series 2000–10). ACT, Inc.
- Linacre, J. M. (2011). *Winsteps*® *Rasch measurement computer program* [computer program]. Winsteps.com.
- Livingston, S. A., & Lewis, C. (1995). Estimating the consistency and accuracy of classifications based on test scores. *Journal of Educational Measurement*, *32*, 179–197.
- Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149-174.
- Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. *Applied Psychological Measurement*, 16, 159–176.
- National Research Council (NRC). (2012). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press. https://doi.org/10.17226/13165
- NGSS Lead States. (2013). *Next generation science standards: For states, by states*. The National Academic Press. <u>https://www.nextgenscience.org/search-standards</u>
- Pearson. (2024). Colorado Measures of Academic Success (CMAS) Science 2022 standard setting report. Report developed under contract for the Colorado Department of Education (CDE).
- Rasch, G. (1966). An item analysis which takes individual differences into account. *British Journal of Mathematical and Statistical Psychology*, *19*, 49–57.
- Revivo, R. Z., Dickinson, E. R., & Borawski, E. A. (2023, October). *Colorado Measures of Academic Success (CMAS) Science alignment study report*. Human Resources Research Organization (HumRRO).
- Stocking, M. L., & Lord, F. M. (1983). Developing a common metric in item response theory. *Applied Psychological Measurement*, 7(2), 201–210.
- Stout, W. F. (1990). A new item response theory modelling approach and applications to unidimensionality assessment and ability estimation. *Psychometrika*, 55, 293-325.

Vector Psychometric Group. (2022). IRTPRO [computer program].

- Wells, C. S., Hambleton, R. K., Kirkpatrick, R., & Meng, Y. (2014). An examination of two procedures for identifying consequential item parameter drift. *Applied Measurement in Education*, 27, 214–231.
- Williamson, D. M., Xi, X., & Breyer, F. J. (2012). A framework for evaluation and use of automated scoring. *Educational Measurement: Issues and Practice*, 31(1), 2–13.
- Wright, B. D., & Masters, G. N. (1982). Rating scale analysis: Rasch measurement. MESA Press.
- Wright, B. D., & Stone, M. H. (1979). Best test design: Rasch measurement. MESA Press.
- Yen, W. M. (1981). Using simulation results to choose a latent trait model. *Applied Psychological Measurement*, 5(2), 245–262.

Appendix A: Test Blueprints

The following tables present the percentage targets for each content area and grade-level assessment.

Item Type/Subclaim/Calculator Use	Grade 3	Grade 4	Grade 5
Total #Points	50-51	50-51	50-51
Туре І	61–62%	61–61%	61–62%
1.1	49–50%	37–38%	37-38%
1.2	12%	24%	24%
1.4	_	_	_
Subclaim A: Major Content	43–44%	47–48%	45–46%
Subclaim B: Supporting Content	18%	14%	16%
Type II	20-22%	20-22%	20-22%
2.3	6–12%	6–12%	6–12%
2.4	8–16%	8-16%	8–16%
Subclaim C: Expressing Mathematical Reasoning	20-22%	20-22%	20-22%
Type III	18%	18%	18%
3.3	6%	6%	6%
3.6	12%	12%	12%
Subclaim D: Modeling and Application	18%	18%	18%
Calculator	_	_	_
Non-Calculator	100%	100%	100%

Table A.1. Test Blueprint—Mathematics Grades 3–5

Table A.2. Test Blueprint—Mathematics Grades 6–8

Item Type/Subclaim/Calculator Use	Grade 6	Grade 7	Grade 8
Total #Points	50-51	50-51	50-51
Туре І	61–62%	61–62%	61–62%
1.1	37-38%	37-38%	33-34%
1.2	16%	16%	12-20%
1.4	8%	8%	8–16%
Subclaim A: Major Content	39–40%	45-46%	41-42%
Subclaim B: Supporting Content	22%	16%	20%
Type II	20-22%	20-22%	20-22%
2.3	6–12%	6–12%	6–12%
2.4	8–16%	8-16%	8–16%
Subclaim C: Expressing Mathematical Reasoning	20-22%	20-22%	20-22%
Type III	18%	18%	18%
3.3	6%	6%	6%
3.6	12%	12%	12%
Subclaim D: Modeling and Application	18%	18%	18%
Calculator	72–73%	76%	72–73%
Non-Calculator	27-28%	24%	27-28%

Subclaim	Grade 3 (includes CSLA)	Grade 4 (includes CSLA)	Grade 5
Total #Points	53 (65)	59 (73)	57 (71)
Reading	77% (63%)	78% (63%)	77% (62%)
Literary Text	32% (26%)	31-34% (25-27%)	32% (25%)
Informational Text	26% (22%)	31% (25%)	32% (25%)
Vocabulary	19% (15%)	14–17% (11–14%)	14% (11%)
Writing	23% (37%)	22% (37%)	23% (38%)
Written Expression	11% (28%)	12% (29%)	12% (30%)
Knowledge and Use of Language Conventions	11% (9%)	10% (8%)	10% (8%)

Table A.3. Test Blueprint—ELA Grades 3–5

Note. The numbers in parantheses bare based on weighted Written Expression scores. Scores may not add up as expected due to rounding.

Table A.4. Test Blueprint—ELA Grades 6–8

Subclaim	Grade 6	Grade 7	Grade 8
Total #Points	62 (78)	64 (80)	64 (80)
Reading	77% (62%)	78% (63%)	78% (63%)
Literary Text	26-29% (21-23%)	28% (23%)	28% (23%)
Informational Text	35% (28%)	34% (28%)	34% (28%)
Vocabulary	13-16% (10-13%)	16% (13%)	16% (13%)
Writing	23% (38%)	22% (38%)	22% (38%)
Written Expression	13% (31%)	13% (30%)	13% (30%)
Knowledge and Use of Language Conventions	10% (8%)	9% (8%)	9% (8%)

Note. The numbers in parantheses bare based on weighted Written Expression scores. Scores may not add up as expected due to rounding.

Table A.5. Test Blueprint—Science Grade 5

	%Total Test	#Points		
Standard/Item Type	Score Points	Cluster	Mini Cluster	Standalone
Physical	35	7-9	0-6	3-7
Physical/Life	24	7-9	0-6	0-7
Earth and Space	41	7-9	0-6	4-10
Science and Engineering Practices	65–75	_	_	_
SR and TE	53	_	_	_
CR	47	_	_	_
Total	100	24-26	10-12	15

	%Total Test		#Points	
Standard/Item Type	Score Points	Cluster	Mini Cluster	Standalone
Physical	34	7	6-12	0-6
Life	36	7	6-12	1-7
Earth and Space	30	7	6	3
Science and Engineering Practices	65–74	_	_	_
SR and TE	53	_	_	_
CR	47	_	_	_
Total	100	21	24	16

Table A.6. Test Blueprint—Science Grade 8 (MS)

Table A.7. Test Blueprint—Science Grade 11 (HS)

	%Total Test		#Points	
Standard/Item Type	Score Points	Cluster	Mini Cluster	Standalone
Physical	46	6	5-9	4-7
Life	32	6	4-8	2-6
Earth and Space	31	9	5-8	2-5
Science and Engineering Practices	65–74	_	_	_
SR and TE	53	-	_	_
CR	47	_	_	_
Total	100	18	19	13

Appendix B: Science Cognitive Complexity Framework

Colorado Measures of Academic Success (CMAS) Science

Final Cognitive Complexity Framework, January 2023

Item Cognitive Complexity

Note: Examples provided are not intended to be comprehensive of all items meeting that descriptor.

Item Cognitive Complexity						
	Low - Single Dimension	Medium - Two Dimensions	High - All Three Dimensions			
ltem Dimensionality ¹	Item requires demonstration of only one dimension.	Item requires integration of two dimensions, described in the <u>CAS</u> <u>Learning Progressions documents.</u>	Item requires integration of three dimensions, described i the <u>CAS Learning Progressions</u> <u>documents.</u>			
	Low - Heavy	Medium - Moderate	High - Minimal			
Scaffolding/Support	The task prescribes a fully specified approach for responding. - All components are provided and commonplace; student does not need to infer or select from them: o formulas o Punnett squares o components of energy in a system o unbalanced chemical equations o labels to be applied to familiar models - Problem-solving steps are provided in the stimulus; student only executes them.	The task focuses student to <i>apply</i> an approach that is only partially specified. - Student is provided either a partial set of components for a routine task or an excess of components for a more complex task; student must either infer what is missing or discard what is irrelevant: o suggest original components to incorporate into an incomplete model o apply the correct formula(s) out of several available options o explain an observed instance using a specified concept o describe the missing steps from an incomplete investigational procedure - There is some uncertainty associated with the outcome of the scenario. - Some portion of the task is accomplished by way of provided problem-solving steps, but the student must choose or devise some portion of the process.	 The task frames a situation that the student must <i>interpreto select or develop multiple steps</i> of an approach. Student is presented with multiple informational inputs between which the relationship is not immediately obvious. A high degree of uncertainty is associated with the outcome of the scenario. Student selects or develops multiple problem-solving steps to complete a specific, structured, defined task or goal: design an investigation use listed materials to develop an original model explain an observed instance using one or more unspecified concepts determine and apply a sequence of formulas to solve a problem 			

	Low - Minimal	Medium - Surface	High - Intensive
Sensemaking Sensemaking situation: students are provided material without obvious ties/connections to content (e.g., language of the standard); they must use their knowledge of the standard to explain what they see in the material.	 Task is answerable via rote knowledge connected to the phenomenon solely by context. Item requires no engagement with the stimulus. The student can correctly answer without addressing the central concept [mystery/puzzle] of the phenomenon. Focused on identifying an answer, not on explaining phenomena. identify the components of a familiar system without explaining their importance to the system. identify the trend in a graph without using it to explain or predict anything. 	 Making sense of a phenomenon or addressing a problem is necessary to accomplish at least a portion of the item, or answering the item is a strategic step toward a sensemaking goal. Answer requires: use of information, data, or a model to develop an explanation or argument connection of multiple pieces of information. Task asks for standards-based explanation of observations, but not the detailed relationships behind those observations: determine which of several data sets correlates with the trend under observation determine which portion of a system is most directly connected to the phenomenon given data and a proposed cause for a phenomenon, provide support for that cause from the data 	 Making sense of a phenomenon or addressing a problem is the fundamental source of challenge in the item. Meaningful (valid, accurate, causal, etc.) information must be distinguished from other information through reasoning: speculate a cause for an unusual observation and provide support for that cause from given data determine corresponding trends between multiple data sets and evaluate for causation notice patterns within data and connect them to the phenomenon under consideration predict how a change to one part of a system will impact another part Task requires use of pertinent standard knowledge to explain both observations and the detailed relationships behind those observations.

¹ - Disciplinary Core Ideas (DCI), Science and Engineering Practices (SEP), Crosscutting Concepts (CCC)

Overall Item Cognitive Complexity Rating

The overall cognitive complexity rating for the item follows a majority rules approach when comparing the ratings for dimensionality, scaffolding/support, and sensemaking.

- Item complexity is High if at least two of the three categories are rated at the highest level
- Item complexity is Low if two are rated at the lowest level.
- Item complexity is **Medium** in all other cases.

Final CMAS Cognitive Complexity Framework 2023 Adapted from Achieve Cognitive Complexity in Science Assessments and Task Analysis Guide for Science

Cluster Stimulus Cognitive Complexity

Note: Use the following **only for** the purpose of rating cluster and simulation stimuli.

		Cluster Stimulus Complexity	
	1 - Low	2 - Medium	3 - High
Phenomenon/ Stimulus Material	 The task provides a problem or a phenomenon that students are already familiar with how to explain or solve. Student is presented a simple, probably familiar situation/scenario and selects the appropriate, direct scientific explanation for the phenomenon. Context is rudimentary or taken directly from the EO, Clarification Statement, or DCI. Information is limited to that specifically needed to address the task. 	 The scenario presents a relatively new phenomenon that students might have some familiarity with, which contains some specific uncertainty for tasks to focus on. The scenario has multiple facets of information for students to interpret at a grade-appropriate level of sophistication. Within the scenario there are explicit cues and/or scaffolding to focus students toward related tasks. The provided components are sufficient for students to arrive at the appropriate scientific explanation for the phenomenon. Context is substantial and goes beyond examples listed in the standards text. 	 The scenario presents a new phenomenon or problem that is at a level that "figuring out" would be real and authentic for students is not immediately explainable by the student likely involves multiple appropriate ways to engage and pursue the task Connection of context to the standards is indirect or unobvious.

Final CMAS Cognitive Complexity Framework 2023 Adapted from Achieve Cognitive Complexity in Science Assessments and Task Analysis Guide for Science

Appendix C: ELA and CSLA Scoring Rubrics

Grade 3

CMAS Scoring Rubric for Prose Constructed Response Items

Construct Measured	Score Point 3	Score Point 2	Score Point 1	Score Point 0	
Reading	 The student response demonstrates full comprehension by providing an accurate explanation/description/ comparison; addresses the prompt and provides effective development of the topic that is consistently enpropriete to task 	 The student response demonstrates comprehension by providing a mostly accurate explanation/ description/comparison; addresses the prompt and provides some development of the topic that is generally appropriate to task, 	limited in its	 The student response does not demonstrate comprehension; is undeveloped and/or inappropriate to the task, purpose, and audience; includes little to no text-based 	
Reading Comprehension and Written Expression	eading appropriate to task, omprehension nd Written uses clear reasoning outpotted by relevant	 appropriate to task, purpose, and audience; uses reasoning and relevant, text-based evidence in the development of the topic; is organized with mostly clear and coherent writing; uses language in a way that is mostly effective to darify ideas. 	 appropriateness to task, purpose, and audience; uses limited reasoning and text- based evidence; demonstrates limited organization and coherence; uses language to express ideas with limited clarity. 	 no text-based evidence; lacks organization and coherence; does not use language to express ideas with clarity. 	
Knowledge of Language and Conventions	The student response to the prompt demonstrates full command of the conventions of standard English at an appropriate level of complexity. There may be a few minor errors in mechanics, grammar, and usage, but meaning is clear .	The student response to the prompt demonstrates some command of the conventions of standard English at an appropriate level of complexity. There may be errors in mechanics, grammar, and usage that occasionally impede understanding, but the meaning is generally clear.	The student response to the prompt demonstrates limited command of the conventions of standard English at an appropriate level of complexity. There may be errors in mechanics, grammar, and usage that often impede understanding.	The student response to the prompt does not demonstrate command of the conventions of standard English at th appropriate level of complexity. Frequent and varied errors in mechanics, grammar, and usage impede understanding .	

Grade 3 CMAS Scoring Rubric for Prose Constructed Response Items

Narrative Task (NT)

Construct Measured	Score Point 3	Score Point 2	Score Point 1	Score Point 0
Written Expression	 The student response is effectively developed with narrative elements and is consistently appropriate to the task; is effectively organized with clear and coherent writing uses language effectively to clarify ideas. 	 The student response is developed with some narrative elements and is generally appropriate to the task; is organized with mostly coherent writing; uses language in a way that is mostly effective to clarify ideas. 	 The student response is minimally developed with few narrative elements and is limited in its appropriateness to the task; demonstrates limited organization and coherence; uses language to express ideas with limited darity. 	 The student response is undeveloped and/or inappropriate to the task; lacks organization and coherence; does not use language to express ideas with clarity.
Knowledge of Language and Conventions	The student response to the prompt demonstrates full command of the conventions of standard English at an appropriate level of complexity. There may be a few minor errors in mechanics, grammar, and usage, but meaning is clear .	The student response to the prompt demonstrates some command of the conventions of standard English at an appropriate level of complexity. There may be errors in mechanics, grammar, and usage that occasionally impede understanding, but the meaning is generally clear.	The student response to the prompt demonstrates limited command of the conventions of standard English at an appropriate level of complexity. There may be errors in mechanics, grammar, and usage that often impede understanding .	The student response to the prompt does not demonstrate command of the conventions of standard English at the appropriate level of complexity. Frequent and varied errors in mechanics, grammar, and usage impede understanding .

NOTE:

- The reading dimension is not scored for elicited narrative stories.
- Per the CCSS, narrative elements in grades 3-5 may include: establishing a situation; organizing a logical event sequence; describing scenes, objects, or people; developing characters' personalities; and using dialogue as appropriate.
- The elements of organization to be assessed are expressed in the grade-level standards W1-W3.

Developed collaboratively with PARCC.

Grades 4 and 5

CMAS Scoring Rubric for Prose Constructed Response Items

Research Simulation Task (RST) and Literary Analysis Task (LAT)

Construct Measured	Score Point 4	Score Point 3	Score Point 2	Score Point 1	Score Point 0
Measured Reading Comprehen- sion and Written Expression	The student response demonstrates full comprehension of ideas stated explicitly and/or inferentially by providing an accurate analysis; addresses the prompt and provides effective development of the topic that is consistently appropriate to task, purpose, and audience; uses clear reasoning supported by relevant, text- based evidence in the development of the topic; is effectively organized with clear and coherent writing; uses language effectively to darify ideas.	The student response • demonstrates comprehension of ideas stated explicitly and/or inferentially by providing a mostly accurate analysis; • addresses the prompt and provides mostly effective development of the topic that is appropriate to task, purpose, and audience; • uses mostly clear reasoning supported by relevant text- based evidence in the development of the topic; • is organized with mostly clear and coherent writing • uses language that is mostly effective to clarify ideas.	 The student response demonstrates basic comprehension of ideas stated explicitly and/or inferentially by providing a generally accurate analysis; addresses the prompt and provides some development of the topic that is somewhat appropriate to task, purpose, and audience; uses some reasoning and text- based evidence in the development of the topic; demonstrates some organization with somewhat coherent writing; uses language to express ideas with some clarity. 	The student response demonstrates imited comprehension of ideas by providing a minimelly accurate analysis; addresses the prompt and provides minimal development of the topic that is imited in its appropriateness to task, purpose, and audience; uses limited reasoning and text-based evidence; demonstrates imited organization and coherence; uses language to express ideas with imited clarity.	 The student response demonstrates no comprehension of ideas by providing an inaccurate or no analysis. is undeveloped and/or inappropriate to the task, purpose, and audience; includes little to m text-based evidence; lacks organization and coherence; does not use language to express ideas with clarity.
Knowledge of Language and Conventions		The student response to the prompt demonstrates full command of the conventions of standard English at an appropriate level of complexity. There may be a few minor errors in mechanics, grammar, and usage, but meaning is clear .	The student response to the prompt demonstrates some command of the conventions of standard English at an appropriate level of complexity. There may be errors in mechanics, grammar, and usage that occasionally impede understanding , but the meaning is generally clear .	The student response to the prompt demonstrates limited command of the conventions of standard English at an appropriate level of complexity. There may be errors in mechanics, grammar, and usage that often impede understanding.	The student respons to the prompt does not demonstrate command of the conventions of standard English at the appropriate leve of complexity. Frequent and varied errors in mechanics, grammar, and usage impede understanding.

Grades 4 and 5 CMAS Scoring Rubric for Prose Constructed Response Items

Narrative Task (NT)

Construct Measured	Score Point 3	Score Point 2	Score Point 1	Score Point 0
Written Expression	 The student response is effectively developed with narrative elements and is consistently appropriate to the task; is effectively organized with clear and coherent writing uses language effectively to clarify ideas. 	 The student response is developed with some narrative elements and is generally appropriate to the task; is organized with mostly coherent writing; uses language in a way that is mostly effective to darify ideas. 	 The student response is minimally developed with few narrative elements and is limited in its appropriateness to the task; demonstrates limited organization and coherence; uses language to express ideas with limited darity. 	 The student response is undeveloped and/or inappropriate to the task; lacks organization and coherence; does not use language to express ideas with clarity.
Knowledge of Language and Conventions	The student response to the prompt demonstrates full command of the conventions of standard English at an appropriate level of complexity. There may be a few minor errors in mechanics, grammar, and usage, but meaning is clear .	The student response to the prompt demonstrates some command of the conventions of standard English at an appropriate level of complexity. There may be errors in mechanics, grammar, and usage that occasionally impede understanding , but the meaning is generally clear.	The student response to the prompt demonstrates limited command of the conventions of standard English at an appropriate level of complexity. There may be errors in mechanics, grammar, and usage that often impede understanding .	The student response to the prompt does not demonstrate command of the conventions of standard English at the appropriate level of complexity. Frequent and varied errors in mechanics, grammar, and usage impede understanding.

NOTE:

- The reading dimension is not scored for elicited narrative stories.
- Per the CCSS, narrative elements in grades 3-5 may include: establishing a situation; organizing a logical event sequence; describing scenes, objects, or people; developing characters' personalities; and using dialogue as appropriate.
- The elements of organization to be assessed are expressed in the grade-level standards W1-W3.

Developed collaboratively with PARCC.

Grades 6 through 8

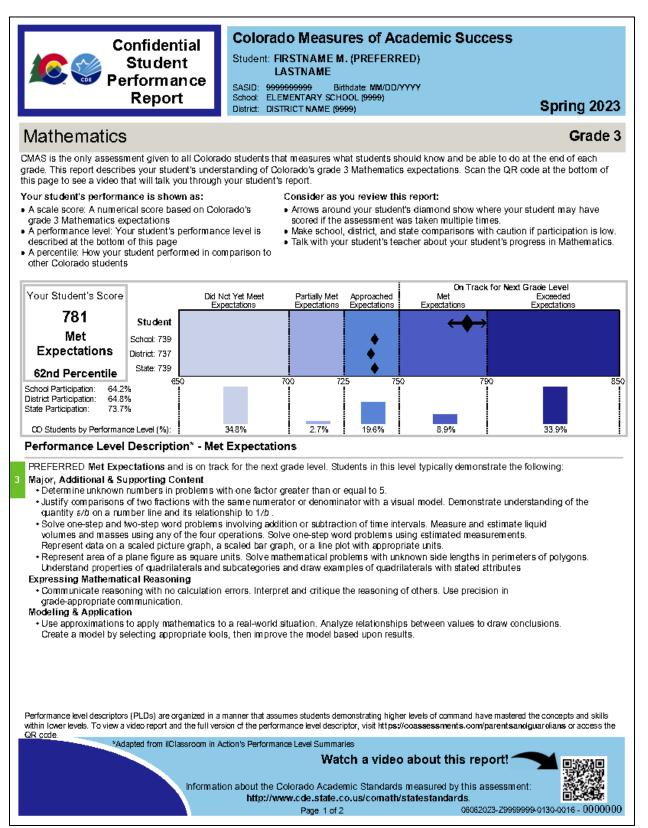
CMAS Scoring Rubric for Prose Constructed Response Items

Research Simulation Task (RST) and Literary Analysis Task (LAT)

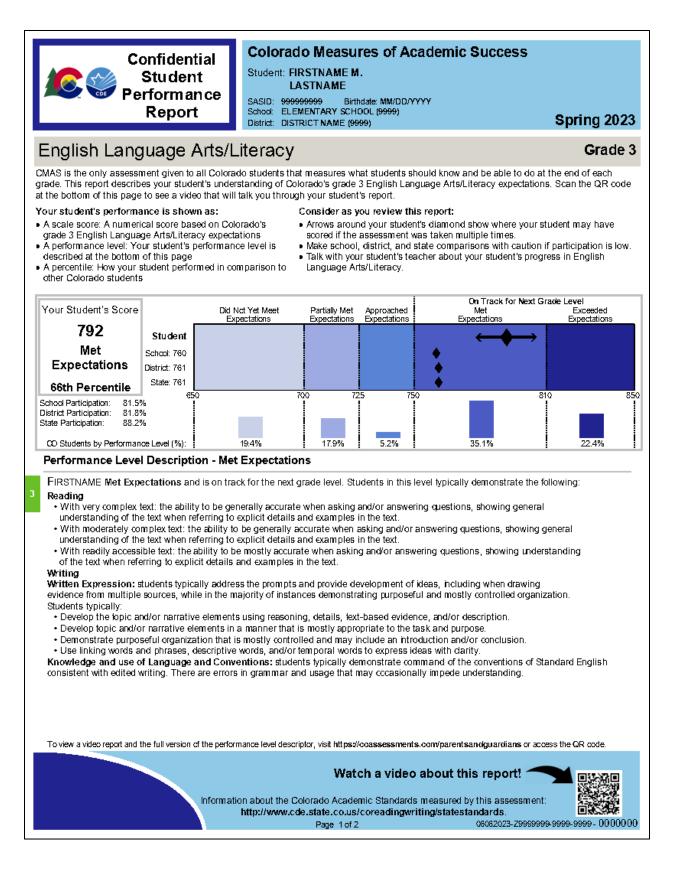
Construct Measured	Score Point 4	Score Point 3	Score Point 2	Score Point 1	Score Point 0
	Score Point 4 The student response • demonstrates full comprehension of ideas stated explicitly and inferentially by providing an accurate analysis; • addresses the prompt and provides effective and comprehensive development of the claim or topic that is consistently appropriate to task, purpose, and audience; • uses clear reasoning supported by relevant text-based evidence in the development of the claim or topic; • is effectively organized with clear and coherent writing; • establishes and	Score Point 3 The student response • demonstrates comprehension of ideas stated explicitly and/or inferentially by providing a mostly accurate analysis; • addresses the prompt and provides mostly effective development of claim or topic that is mostly appropriate to task, purpose, and audience; • uses mostly clear reasoning supported by relevant text- based evidence in the development of the claim or topic; • is organized with mostly clear and coherent writing; • establishes and maintains a mostly effective style.	 The student response demonstrates basic comprehension of ideas stated explicitly and/or inferentially by providing a generally accurate analysis; addresses the prompt and provides some development of claim or topic that is somewhat appropriate to task, purpose, and audience; 	The student response demonstrates imited comprehension of ideas stated explicitly and/or inferentially by providing a minimally accurate analysis; addresses the prompt and provides minimal development of claim or topic that is limited in its appropriateness to task, purpose, and audience; uses limited reasoning and text- based evidence; demonstrates limited organization and	Score Point 0 The student response • demonstrates no comprehension of ideas by providing an inaccurate or no analysis; • is undeveloped and/or inappropriate to task, purpose, and audience; • includes Ittle to no text-based evidence • lacks organization and coherence; • has an inappropriate style
Knowledge of Language and Conventions	effective style.	The student response to the prompt demonstrates full command of the conventions of standard English at an appropriate level of complexity. There may be a few minor errors in mechanics, grammar, and usage, but meaning is clear.	The student response to the prompt demonstrates some command of the conventions of standard English at an appropriate level of complexity. There may be errors in mechanics, grammar, and usage that occasionally impede understanding , but the meaning is generally clear .	The student response to the prompt demonstrates limited command of the conventions of standard English at an appropriate level of complexity. There may be errors in mechanics, grammar, and usage that often impede understanding.	The student response to the prompt does not demonstrate command of the conventions of standard English at the appropriate level of complexity. Frequent and varied errors in mechanics, grammar, and usage impede understanding.

Grades 6 through 8 CMAS Scoring Rubric for Prose Constructed Response Items

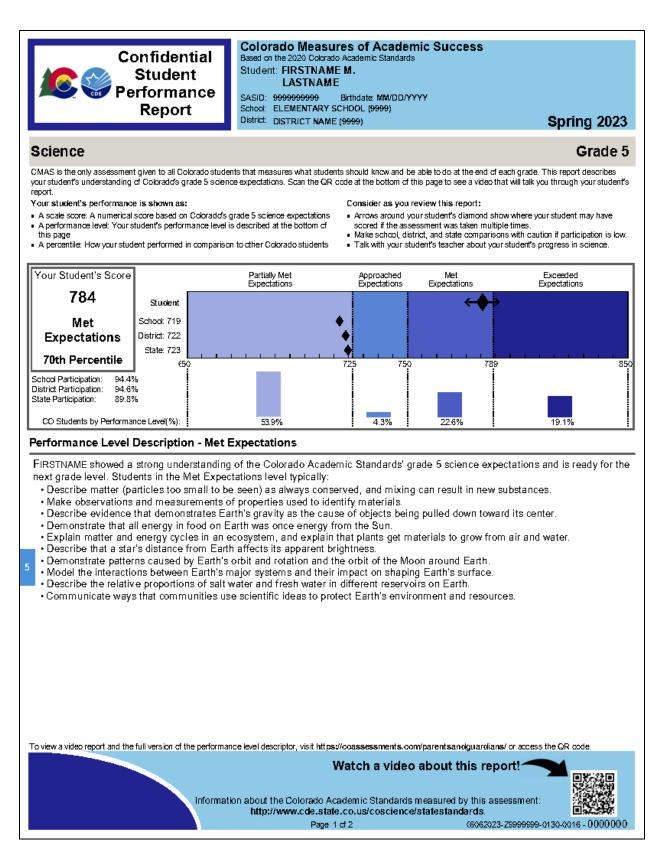
Narrative Task (NT)


Construct Measured	Score Point 4	Score Point 3	Score Point 2	Score Point 1	Score Point 0
Written Expression	 The student response is effectively developed with narrative elements and is consistently appropriate to the task; is effectively organized with clear and coherent writing establishes and maintains an effective style. 	 The student response is mostly effectively developed with narrative elements and is mostly appropriate to the task; is organized with mostly clear and coherent writing establishes and maintains a mostly effective style. 	 The student response is developed with some narrative elements and is generally appropriate to the task; demonstrates some organization with somewhat coherent writing; has a style that is somewhat effective. 	 The student response is minimally developed with few narrative elements and is limited in its appropriateness to the task; demonstrates limited organization and coherence; has a style that has limited effectiveness. 	 The student response is undeveloped and/or inappropriate to the task; lacks organization and coherence; has an inappropriate style.
Knowledge of Language and Conventions		The student response to the prompt demonstrates full command of the conventions of standard English at an appropriate level of complexity. There may be a few minor errors in mechanics, grammar, and usage, but meaning is clear .	The student response to the prompt demonstrates some command of the conventions of standard English at an appropriate level of complexity. There may be errors in mechanics, grammar, and usage that occasionally impede understanding , but the meaning is generally clear .	The student response to the prompt demonstrates limited command of the conventions of standard English at an appropriate level of complexity. There may be errors in mechanics, grammar, and usage that often impede understanding .	The student response to the prompt does not demonstrate command of the conventions of standard English at th appropriate level of complexity. Frequent and varied errors in mechanics, grammar, and usage impede understanding.

NOTE:


- The reading dimension is not scored for elicited narrative stories.
- The elements of coherence, clarity, and cohesion to be assessed are expressed in the grade-level standards 1-4 for writing.
- Tone is not assessed in grade 6.
- Per the CCSS, narrative elements in grades 3-5 may include: establishing a situation; organizing a logical event sequence; describing scenes, objects, or people; developing characters' personalities; and using dialogue as appropriate. In grades 6-8, narrative elements may include, in addition to the grades 3-5 elements: establishing a context, situating events in a time and place, developing a point of view, and developing characters' motives. The elements to be assessed are expressed in grade-level standards 3 for writing.

Developed collaboratively with PARCC.


Appendix D: Sample Student Performance Reports

lathematics					Conf	identi
 Ibclaim Performance The top bar in each of the other graphs shows the percent of point assessment subclaims. District Averages are provided for comparison. State Averages are provided for comparison. Average of students at the Met Expectations performance level state 	-		d for each of th	e four mathe	matics	
	Points		Percent	of Points Ea	rneol*	
Mathematica, Defects and free distribution anter	Possible	0%	25%	50%	75%	100%
Mathematics - Refer to page 1 for participation rates.		4001		i		
Major Content Students solve problems involving multiplication and division, area, measurement, and basic fraction understanding.	22	100%		-		
Additional & Supporting Content Students solve problems involving perimeter, place value, geometric shapes, and representations of data.	9	100%		-		
Expressing Mathematical Reasoning Students create and justify logical mathematical solutions and analyze and correct the reasoning of others.	11	9%	1			
Modeling & Application Students solve real-world problems, represent and solve problems with symbols, reason quantitatively, and strategically use appropriate tools.	9	33%		-		
Percent of points earned cannot be compared across years because individual items o year. They also cannot be compared across subclaims because the number of iten ifficulty of items may not be the same.		om year				

			со	PVABCFN	S. COABC	PVLNME
English Language Arts/Literacy					Confi	dential
iu bclaim Performance ←→ The top diamond in the figure below shows your student's performa The top bar in each of the other graphs shows the percent of points District Averages are provided for comparison. State Averages are provided for comparison. Average of students at the Met Expectations performance level star	your stue	dent ea	rned for writing and	specific area	s of reading a	and writing
Reading - Refer to page 1 for participation rates.						
The figure below shows your student's scale score in relation to school, district, and	state avera		10 130	150	170	190
Reading Scale Score	Student		· · · · ·		←	\rightarrow
	School	152		•		
	District	152		•		
	State	151				
	Points		Percent	of Points Ea	rned*	
	Possible	0	% 25%	50%	75%	100%
Literary Text	17	82%	+	- 1		
Students read and analyze fiction, drama, and poetry.		52.10			:	
Informational Text		4000/			i	_
Students read and analyze nonfiction, history, science, and the arts.	14	100%	-	<u> </u>		
			:	:		
				I		
Vocabulary Students use context to determine what words and phrases mean.	10	100%	•	<u> </u>	<u>.</u>	
olddenis use context to determine what words and phrases mean.						
	Points		Percent	of Points Ea	rned*	
	Possible	0	% 25%	50%	75%	100%
Writing - Refer to page 1 for participation rates.						
Overall	24	0%				
Writing Overall is calculated by multiplying Written Expression points						
by three and adding Language and Conventions points.						
Written Expression	6	0%				
Students compose well-developed writing using details from what they have read.						
Language and Conventions Students demonstrate knowledge of conventions and other important	6	0%	:	:		
dements of language.						
*Percent of points earned cannot be compared across years because individual items to year. They also cannot be compared across subclaims because the number of item difficulty of items may not be the same.	change fro is and the	xm year				
For information about the CMA http://www.cole.state.co Page:	US/asses:					

						FIRS	TNAME	M.LAS	TNAME
Science							C	Confid	lential
Subscale Performance The shaded areas below represent about 70% of student scores across the state. Diamonds outside of the shaded area indicate a potential weakness or strength core.	npared to t	he state.		I		e of student ance level :			ions
Reporting Category Description	Subscale Score		400	Lower Avera		Aver	age	Higher Avera	
Physical Science					4	50	5/	00	
Common properties, forms, and changes in matter and energy	519 460 463 464	Studer Schoo Distrie Stat	ol ct			•		\$	
Physical/Life Science					44	18	49	8	
Characteristics of living things, processes of life, and how living things interact with each other and their environment	538 457 461 461	Studer Schoo Distric Stat	ol ct			•			♦
Earth and Space Science					4	452	54	00	
Processes and interactions of Earth's systems, and the structure and dynamics of Earth and other objects in space	550 458 461 463	Studer Schoo Distrie Stat	ol ct			•			<
Science and Engineering Practices						453		02	
Making sense of the natural world through investigation and problem solving	544 459 463 464	Studer Schoo Distrie Stat	ol ct			••			
Performance by Prepared Graduate Statements (PGs) and G • PGs and GLEs identify what students need to master to be ready for the next gr • The figure below shows the percent of points your student earned for each grad-	ade level.		pectat	ions (GLEs)	_		ance	
Standard, PG and GLE			Points Possib		P ብ%	ercent of I 25%	Points Ea 50%	rneo(* 75%	100%
Physical Science									
PG 1: Structure, properties, and interactions of matter				-	<u> </u>	_	_		
GLE 1: Matter exists as particles too small to be seen; Properties can be used to	identify ma	iterials	6	67%		_	i.		
GLE 2: Chemical reactions and the Law of Conservation of Mass			6	67%			i		
GLE 3: Gravity			6	50%		_			
Physical/Life Science									
PG 1: Structure, properties, and interactions of matter					1	1	Í	i	
GLE 4: Energy from food was once energy from the sun			_						
PG 6: How living systems interact with the environment GLE 2: Plants get most of their material for growth from air and water PG 6: How living systems interact with the environment			6	100%					
GLE 1: Matter cycles between air and soil; Organisms live and die			6	50%					
Earth and Space Science				<u>.</u>					
PG 9: The universe and Earth's place in it						_	-		
GLE 1: Earth's major systems interact in multiple ways			8	88%					
GLE 2: Interactions between Earth's orbit and the moon's orbit			0	00%		-			-
PG 10: How and why Earth is constantly changing									
GLE 3: Earth's major systems interact in multiple ways		T					1	1	
GLE 4: Earth's major water is in the coean and much of Earth's freshwater is in guiderground	laciers or		7	100%		!		į	
GLE 5: Societal activities have major effects on land, ocean, atmosphere and eve	en outer sp	ace	6	83%		_		!	
*Percent of points earned cannot be compared across years because individual item number of items and the difficulty of items may not be the same.	s change f age 2 of 2	rom year t	to year.	They als	o cannot	be compa	red across	PGs beca	usethe

Appendix E: Student Participation by Demographic Group

able E.I. Biddenit I ai heip			,	in no action		ACD
Subgroup	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
No IEP	49,964	49,488	49,824	49,244	48,095	46,428
IEP	7,418	7,301	7,072	6,669	6,053	5,608
No Accommodation	53,110	51,979	52,062	51,042	49,474	47,522
Accommodation	4,272	4,810	4,834	4,871	4,674	4,514
Am. Indian/Alaska Native	354	360	358	342	351	361
Asian	1,982	2,061	1,976	1,970	1,737	1,700
Black	2,646	2,617	2,508	2,412	2,349	2,285
Hispanic	19,134	19,426	19,695	19,778	19,719	19,525
White	29,847	29,091	29,224	28,353	27,182	25,671
Hawaiian/Pacific Islander	191	191	202	192	161	155
Two or More Races	3,225	3,040	2,930	2,862	2,640	2,333
Missing	*	*	*	*	*	*
No Economic Disadvantage	22,504	22,021	21,945	21,173	20,649	19,955
Economic Disadvantage	34,878	34,768	34,951	34,740	33,499	32,081
Female	28,318	27,931	27,700	27,266	26,065	24,738
Male	29,064	28,858	29,196	28,647	28,083	27,298
Language Proficiency NA	47,355	46,522	46,354	45,451	44,035	42,810
Language Proficiency NEP	2,969	2,387	1,456	1,364	1,470	1,433
Language Proficiency LEP	5,985	5,674	5,196	4,066	4,000	3,637
Language Proficiency FEP	1,073	2,206	3,890	5,032	4,643	4,156
Not Migrant	57,188	56,583	56,696	55,735	53,973	51,865
Migrant	194	206	200	178	175	171

Table E.1. Student Participation N-Count Demographic Distribution—Mathematics

Subgroup	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
No IEP	48,525	48,349	49,580	48,929	47,822	46,148
IEP	7,212	7,170	7,077	6,673	6,073	5,612
No Accommodation	51,771	50,988	51,842	50,912	49,420	47,482
Accommodation	3,966	4,531	4,815	4,690	4,475	4,278
Am. Indian/Alaska Native	352	361	362	345	349	358
Asian	1,945	2,033	1,954	1,937	1,721	1,672
Black	2,644	2,621	2,504	2,397	2,349	2,268
Hispanic	17,620	18,202	19,484	19,559	19,487	19,315
White	29,752	29,056	29,208	28,323	27,185	25,646
Hawaiian/Pacific Islander	184	193	201	191	158	155
Two or More Races	3,237	3,050	2,941	2,846	2,637	2,340
Missing	*	*	*	*	*	*
No Economic Disadvantage	34,560	34,522	34,895	34,649	33,423	32,002
Economic Disadvantage	21,177	20,997	21,762	20,953	20,472	19,758
Female	27,479	27,290	27,614	27,126	25,982	24,638
Male	28,258	28,229	29,043	28,476	27,913	27,122
Language Proficiency NA	47,322	46,561	46,414	45,433	44,086	42,820
Language Proficiency NEP	2,050	1,647	1,159	1,067	1,167	1,168
Language Proficiency LEP	5,293	5,101	5,185	4,060	3,992	3,632
Language Proficiency FEP	1,072	2,210	3,899	5,042	4,650	4,140
Not Migrant	55,564	55,337	56,468	55,431	53,731	51,594
Migrant	173	182	189	171	164	166

Table E.2. Student Participation N-Count Demographic Distribution—ELA

Subgroup	Grade 3	Grade 4
No IEP	1,298	1,070
IEP	142	110
No Accommodation	1,239	976
Accommodation	201	204
Am. Indian/Alaska Native	*	*
Asian	*	*
Black	*	*
Hispanic	1,430	1,170
White	*	*
Hawaiian/Pacific Islander	*	*
Two or More Races	*	*
Missing	*	*
No Economic Disadvantage	241	191
Economic Disadvantage	1,199	989
Female	758	604
Male	682	576
Language Proficiency NA	*	*
Language Proficiency NEP	747	604
Language Proficiency LEP	693	576
Language Proficiency FEP	*	*
Not Migrant	1,426	1,163
Migrant	*	17

Table E.3. Student Participation N-Count Demographic Distribution—CSLA

1			
Subgroup	Grade 5	Grade 8	Grade 11
No IEP	49,442	45,490	28,972
IEP	6,986	5,457	2,795
No Accommodation	52,265	47,278	29,510
Accommodation	4,163	3,669	2,257
Am. Indian/Alaska Native	359	352	223
Asian	1,967	1,671	969
Black	2,481	2,199	1,399
Hispanic	19,509	19,164	13,088
White	29,002	25,117	14,679
Hawaiian/Pacific Islander	201	153	93
Two or More Races	2,906	2,286	1,309
Missing	*	*	*
No Economic Disadvantage	34,695	31,412	20,014
Economic Disadvantage	21,733	19,535	11,753
Female	27,472	24,168	14,935
Male	28,956	26,779	16,832
Language Proficiency NA	45,968	41,893	27,032
Language Proficiency NEP	1,433	1,397	814
Language Proficiency LEP	5,151	3,568	1,985
Language Proficiency FEP	3,876	4,089	1,936
Not Migrant	56,232	50,777	31,674
Migrant	196	170	93

 Table E.4. Student Participation N-Count Demographic Distribution—Science

Appendix F: Scale Score Distributions

00	P .	0/	0 F	C 0/		E	0/		O 0/
SS	Freq.	%	Cum. Freq.	Cum. %	SS	Freq.	%	Cum. Freq.	Cum. %
650	845	1.47	845	1.47	698	384	0.67	9844	17.16
651	51	0.09	896	1.56	699	349	0.61	10193	17.76
652	83	0.14	979	1.71	700	358	0.62	10551	18.39
653	70	0.12	1049	1.83	701	381	0.66	10932	19.05
654	50	0.09	1099	1.92	702	357	0.62	11289	19.67
655	61	0.11	1160	2.02	703	393	0.68	11682	20.36
656	75	0.13	1235	2.15	704	395	0.69	12077	21.05
657	54	0.09	1289	2.25	705	366	0.64	12443	21.68
658	86	0.15	1375	2.40	706	411	0.72	12854	22.40
659	113	0.20	1488	2.59	707	399	0.70	13253	23.10
660	107	0.19	1595	2.78	708	400	0.70	13653	23.79
661	103	0.18	1698	2.96	709	451	0.79	14104	24.58
662	129	0.22	1827	3.18	710	401	0.70	14505	25.28
663	101	0.18	1928	3.36	711	418	0.73	14923	26.01
664	99	0.17	2027	3.53	712	442	0.77	15365	26.78
665	109	0.19	2136	3.72	713	392	0.68	15757	27.46
666	126	0.22	2262	3.94	714	426	0.74	16183	28.20
667	115	0.20	2377	4.14	715	440	0.77	16623	28.97
668	158	0.28	2535	4.42	716	444	0.77	17067	29.74
669	124	0.22	2659	4.63	717	465	0.81	17532	30.55
670	152	0.26	2811	4.90	718	467	0.81	17999	31.37
671	165	0.29	2976	5.19	719	498	0.87	18497	32.23
672	150	0.26	3126	5.45	720	465	0.81	18962	33.05
673	192	0.33	3318	5.78	721	462	0.81	19424	33.85
674	172	0.30	3490	6.08	722	476	0.83	19900	34.68
675	175	0.30	3665	6.39	723	513	0.89	20413	35.57
676	183	0.32	3848	6.71	724	466	0.81	20879	36.39
677	182	0.32	4030	7.02	725	516	0.90	21395	37.29
678	192	0.33	4222	7.36	726	477	0.83	21872	38.12
679	222	0.39	4444	7.74	727	495	0.86	22367	38.98
680	197	0.34	4641	8.09	728	540	0.94	22907	39.92
681	221	0.39	4862	8.47	729	534	0.93	23441	40.85
682	227	0.40	5089	8.87	730	494	0.86	23935	41.71
683	240	0.42	5329	9.29	731	508	0.89	24443	42.60
684	236	0.41	5565	9.70	732	548	0.96	24991	43.55
685	238	0.41	5803	10.11	733	480	0.84	25471	44.39
686	275	0.48	6078	10.11	734	560	0.98	26031	45.36
687	262	0.46	6340	11.05	735	574	1.00	26605	46.36
688	309	0.54	6649	11.59	736	520	0.91	27125	47.27
689	319	0.56	6968	12.14	737	520	0.92	27654	48.19
690	260	0.30	7228	12.14	738	531	0.92	28185	49.12
690	284	0.49	7228	12.00	739	584	1.02	28769	50.14
692	274	0.49	7786	13.09	739	547	0.95	29316	51.09
692 693	307	0.48	8093	13.37	740	558	0.93	29310	52.06
693 694	307	0.54	8093	14.10	741 742	543	0.97	30417	53.01
694 695	321 329	0.56	8743	14.00	742	565	0.93	30417	53.99
695 696					743	505	0.98	30982 31505	53.99 54.90
696 697	343 374	0.60	9086 9460	15.83 16.49	744 745	525	1.02	32089	55.92
097	574	0.65	9400	10.49	/45	504	1.02	32089	55.92

 Table F.1. Scale Score Distribution—Mathematics Grade 3

00	F	0/		C 0/	-	00	D	0/	C E	C 0/
SS	Freq.	%	Cum. Freq.	Cum. %	-	<u>SS</u>	Freq.	%	Cum. Freq.	Cum. %
746	567	0.99	32656	56.91		801	194	0.34	54617	95.18 95.46
747	551	0.96	33207	57.87		802	157	0.27	54774	95.46
748 740	498	0.87	33705	58.74 59.63		803	108	0.19	54882	95.64 05.04
749 750	514 546	0.90 0.95	34219	59.63 60.59		804	173	0.30	55055	95.94 96.15
750 751	546	0.95	34765			805 806	120	0.21	55175	
751 752	553 528		35318 35846	61.55		806 807	149	0.26 0.19	55324	96.41
752 753	528 508	0.92 0.89	36354	62.47 63.35		807 808	110 139	0.19	55434 55573	96.61 96.85
755 754	508 545	0.89	36899	63.33 64.30		808 809	139	0.24	55685	90.83 97.04
755	545 509	0.95	30899	65.19		810	108	0.20	55793	97.04 97.23
756	509 522	0.89	37408	66.10		810	72	0.19	55865	97.23 97.36
757	550	0.91	38480	67.06		812	122	0.13	55987	97.57
758	543	0.90	39023	68.01		812	85	0.21	56072	97.72
759	497	0.95	39520	68.87		814	88	0.15	56160	97.87
760	533	0.87	40053	69.80		815	50	0.13	56210	97.96
761	510	0.93	40553	70.69		816	73	0.09	56283	98.08
762	496	0.86	41059	71.55		817	80	0.13	56363	98.22
762	539	0.94	41598	72.49		818	44	0.08	56407	98.30
764	468	0.82	42066	73.31		819	78	0.14	56485	98.44
765	520	0.02	42586	74.21		820	36	0.06	56521	98.50
766	480	0.84	43066	75.05		821	55	0.10	56576	98.60
767	503	0.88	43569	75.93		822	59	0.10	56635	98.70
768	479	0.83	44048	76.76		823	40	0.07	56675	98.77
769	470	0.82	44518	77.58		824	57	0.10	56732	98.87
770	451	0.79	44969	78.37		825	37	0.06	56769	98.93
771	438	0.76	45407	79.13		826	22	0.04	56791	98.97
772	454	0.79	45861	79.92		827	38	0.07	56829	99.04
773	420	0.73	46281	80.65		828	46	0.08	56875	99.12
774	398	0.69	46679	81.35		829	19	0.03	56894	99.15
775	420	0.73	47099	82.08		830	32	0.06	56926	99.21
776	398	0.69	47497	82.77		831	37	0.06	56963	99.27
777	388	0.68	47885	83.45		832	22	0.04	56985	99.31
778	392	0.68	48277	84.13		833	24	0.04	57009	99.35
779	394	0.69	48671	84.82		834	33	0.06	57042	99.41
780	383	0.67	49054	85.49		835	30	0.05	57072	99.46
781	393	0.68	49447	86.17		836	14	0.02	57086	99.48
782	384	0.67	49831	86.84		837	9	0.02	57095	99.50
783	340	0.59	50171	87.43		838	35	0.06	57130	99.56
784	355	0.62	50526	88.05		839	27	0.05	57157	99.61
785	301	0.52	50827	88.58		840	11	0.02	57168	99.63
786	327	0.57	51154	89.15		841	5	0.01	57173	99.64
787	325	0.57	51479	89.71		842	10	0.02	57183	99.65
788	280	0.49	51759	90.20		843	10	0.02	57193	99.67
789	262	0.46	52021	90.66		844	10	0.02	57203	99.69
790	266	0.46	52287	91.12		845	9	0.02	57212	99.70
791	276	0.48	52563	91.60		846	3	0.01	57215	99.71
792	247	0.43	52810	92.03		847	8	0.01	57223	99.72
793	190	0.33	53000	92.36		848	29	0.05	57252	99.77
794	235	0.41	53235	92.77		849	9	0.02	57261	99.79
795	228	0.40	53463	93.17		850	121	0.02	57382	100.00
796	201	0.35	53664	93.52		050	121	0.21	51562	100.00
797	222	0.39	53886	93.91						
798	151	0.26	54037	94.17						
799	199	0.35	54236	94.52						
800	187	0.33	54423	94.84						

			Distribution						
SS	Freq.	%	Cum. Freq.	Cum. %	SS	Freq.	%	Cum. Freq.	Cum. %
650	293	0.52	293	0.52	700	508	0.89	10377	18.27
651	37	0.07	330	0.58	701	528	0.93	10905	19.20
652	14	0.02	344	0.61	702	496	0.87	11401	20.08
653	2	0.00	346	0.61	703	540	0.95	11941	21.03
654	33	0.06	379	0.67	704	528	0.93	12469	21.96
655	33	0.06	412	0.73	705	524	0.92	12993	22.88
656	30	0.05	442	0.78	706	491	0.86	13484	23.74
657	24	0.04	466	0.82	707	465	0.82	13949	24.56
658	15	0.03	481	0.85	708	506	0.89	14455	25.45
659	27	0.05	508	0.89	709	508	0.89	14963	26.35
660	90	0.16	598	1.05	710	531	0.94	15494	27.28
661	31	0.05	629	1.11	711	512	0.90	16006	28.19
662	27	0.05	656	1.16	712	523	0.92	16529	29.11
663	92	0.16	748	1.32	713	572	1.01	17101	30.11
664	47	0.10	795	1.40	713	545	0.96	17646	31.07
665	56	0.08	851	1.40	714	514	0.91	18160	31.98
666	49	0.10	900	1.58	715	551	0.91	18700	32.95
667	49 74	0.09	900 974	1.38	710	560	0.97	19271	33.93
668	58	0.13	1032	1.72	717	559	0.99	19271 19830	33.93 34.92
669	105	0.10	1032	2.00	718	559	0.98	20381	34.92 35.89
669 670	105 39	0.18 0.07	1137	2.00	719	570	1.00	20381 20951	35.89 36.89
							0.99		30.89
671	111	0.20	1287	2.27	721	564		21515	
672	129	0.23	1416	2.49	722	581	1.02	22096	38.91
673	99	0.17	1515	2.67	723	552	0.97	22648	39.88
674	168	0.30	1683	2.96	724	555	0.98	23203	40.86
675	117	0.21	1800	3.17	725	593	1.04	23796	41.90
676	169	0.30	1969	3.47	726	562	0.99	24358	42.89
677	166	0.29	2135	3.76	727	548	0.96	24906	43.86
678	184	0.32	2319	4.08	728	556	0.98	25462	44.84
679	196	0.35	2515	4.43	729	546	0.96	26008	45.80
680	213	0.38	2728	4.80	730	594	1.05	26602	46.84
681	190	0.33	2918	5.14	731	591	1.04	27193	47.88
682	281	0.49	3199	5.63	732	614	1.08	27807	48.97
683	271	0.48	3470	6.11	733	614	1.08	28421	50.05
684	278	0.49	3748	6.60	734	607	1.07	29028	51.12
685	292	0.51	4040	7.11	735	642	1.13	29670	52.25
686	324	0.57	4364	7.68	736	609	1.07	30279	53.32
687	285	0.50	4649	8.19	737	621	1.09	30900	54.41
688	360	0.63	5009	8.82	738	574	1.01	31474	55.42
689	363	0.64	5372	9.46	739	641	1.13	32115	56.55
690	361	0.64	5733	10.10	740	639	1.13	32754	57.68
691	370	0.65	6103	10.75	741	602	1.06	33356	58.74
692	452	0.80	6555	11.54	742	557	0.98	33913	59.72
693	431	0.76	6986	12.30	743	629	1.11	34542	60.83
694	476	0.84	7462	13.14	744	604	1.06	35146	61.89
695	460	0.81	7922	13.95	745	581	1.02	35727	62.91
696	467	0.82	8389	14.77	746	627	1.10	36354	64.02
697	465	0.82	8854	15.59	747	623	1.10	36977	65.11
698	511	0.82	9365	16.49	748	628	1.11	37605	66.22
699	504	0.90	9869	17.38	749	625	1.10	38230	67.32
099	504	0.69	9809	17.38	749	025	1.10	38230	07.52

 Table F.2. Scale Score Distribution—Mathematics Grade 4

SS	Freq.	%	Cum. Freq.	Cum. %	-	SS	Freq.	%	Cum. Freq.	Cum. %
750	577	1.02	38807	68.34	-	801	82	0.14	55704	98.09
751	612	1.02	39419	69.41		801	73	0.14	55777	98.09
752	609	1.08	40028	70.49		802 803	73	0.13	55854	98.22 98.35
752	598	1.07	40028 40626	70.49 71.54		803 804	66	0.14	55920	98.33 98.47
754	598 594	1.05	40020	72.58		804 805	57	0.12	55920 55977	98.47 98.57
755	583	1.03	41220	72.58		805 806	57	0.10	56034	98.57 98.67
756	584	1.03	41803	73.01 74.64		800 807	50	0.10	56084	98.07 98.76
757	565	0.99	42387 42952	75.63		807	58	0.09	56142	98.70 98.86
758	545	0.99	42932 43497	75.03		808 809	43	0.10	56185	98.80 98.94
759	516	0.90	44013	70.39		809	43 34	0.08	56219	98.94 99.00
760	512	0.91	44013	77.30		810	44	0.00	56263	99.00 99.07
761	536	0.90	44525	79.35		812	30	0.08	56293	99.07 99.13
762	503	0.94	45564	80.23		812	30	0.05	56323	99.13 99.18
763	498	0.89	46062	80.23 81.11		813	33	0.05	56356	99.18 99.24
763	498	0.88	46512	81.90		814 815	20	0.00	56376	99.24 99.27
765	419	0.79	46931	81.90 82.64		815	19	0.04	56395	99.27 99.31
765	419	0.74	40931 47381	82.04 83.43		810	28	0.05	56423	99.31 99.36
767	440	0.79	47821	83.43 84.21		818	28	0.03	56448	99.30 99.40
768	403	0.77	47821 48224	84.92		818	16	0.04	56464	99.40 99.43
769	403	0.71	48224 48635	84.92 85.64		819	10	0.03	56483	99.43 99.46
709	386	0.72	49021	85.04 86.32		820 821	12	0.03	56495	99.40 99.48
771	350	0.68	49371	86.94		822	24	0.02	56519	99.52
772	365	0.62	49736	87.58		822	7	0.04	56526	99.52 99.54
773	366	0.64	50102	87.38		823 824	12	0.01	56538	99.54 99.56
774	347	0.61	50449	88.84		825	21	0.02	56559	99.59
775	350	0.62	50799	89.45		826	12	0.04	56571	99.62
776	340	0.60	51139	90.05		827	10	0.02	56581	99.63
777	311	0.55	51450	90.60		828	9	0.02	56590	99.65
778	310	0.55	51760	91.14		829	7	0.02	56597	99.66
779	295	0.52	52055	91.66		830	3	0.01	56600	99.67
780	256	0.32	52311	92.11		831	7	0.01	56607	99.68
781	276	0.49	52587	92.60		832	11	0.02	56618	99.70
782	253	0.45	52840	93.05		833	8	0.01	56626	99.71
783	232	0.41	53072	93.45		834	17	0.03	56643	99.74
784	221	0.39	53293	93.84		835	3	0.01	56646	99.75
785	205	0.36	53498	94.20		836	7	0.01	56653	99.76
786	208	0.37	53706	94.57		837	3	0.01	56656	99.77
787	201	0.35	53907	94.93		838	4	0.01	56660	99.77
788	204	0.36	54111	95.28		839	16	0.03	56676	99.80
789	179	0.32	54290	95.60		840	1	0.00	56677	99.80
790	146	0.26	54436	95.86		842	14	0.02	56691	99.83
791	151	0.27	54587	96.12		844	2	0.00	56693	99.83
792	150	0.26	54737	96.39		846	1	0.00	56694	99.83
793	136	0.24	54873	96.63		847	5	0.01	56699	99.84
794	130	0.23	55004	96.86		849	5	0.01	56704	99.85
795	119	0.21	55123	97.07		850	85	0.15	56789	100.00
796	118	0.21	55241	97.27						
797	115	0.20	55356	97.48						
798	82	0.14	55438	97.62						
799	92	0.16	55530	97.78						
800	92	0.16	55622	97.95						
500	ı / _	5.10	000000							

SS	Freq.	%	Cum. Freq.	Cum. %	SS	Freq.	%	Cum. Freq.	Cum. %
650	218	0.38	218	0.38	700	442	0.78	9075	15.95
651	6	0.01	224	0.39	701	500	0.88	9575	16.83
652	27	0.05	251	0.44	702	513	0.90	10088	17.73
653	34	0.06	285	0.50	703	483	0.85	10571	18.58
654	35	0.06	320	0.56	704	516	0.91	11087	19.49
655	55	0.10	375	0.66	705	503	0.88	11590	20.37
656	49	0.09	424	0.75	706	512	0.90	12102	21.27
657	26	0.05	450	0.79	707	501	0.88	12603	22.15
658	33	0.06	483	0.85	708	528	0.93	13131	23.08
659	51	0.09	534	0.94	709	577	1.01	13708	24.09
660	13	0.02	547	0.96	710	528	0.93	14236	25.02
661	38	0.07	585	1.03	711	520	0.91	14756	25.94
662	27	0.05	612	1.08	712	531	0.93	15287	26.87
663	16	0.03	628	1.10	713	546	0.96	15833	27.83
664	45	0.03	673	1.10	713	558	0.98	16391	28.81
665	43 27	0.08	700	1.13	714	553	0.98	16944	29.78
666	64	0.03	764	1.23	715	544	0.97	17488	29.78 30.74
667	88	0.11	852	1.54	710	599	1.05	18087	31.79
668	88 55	0.13	907	1.59	717	526	0.92	18613	32.71
					718	546	0.92	19159	33.67
669 670	120 87	0.21 0.15	1027 1114	1.81 1.96	719 720	601	0.96 1.06	19139	33.07 34.73
								20318	34.73
671 (72	83	0.15	1197	2.10	721	558 562	0.98		
672	89 76	0.16	1286	2.26	722	562	0.99	20880	36.70
673	76	0.13	1362	2.39	723	554	0.97	21434	37.67
674	103	0.18	1465	2.57	724	561	0.99	21995	38.66
675	106	0.19	1571	2.76	725	571	1.00	22566	39.66
676	165	0.29	1736	3.05	726	557	0.98	23123	40.64
677	160	0.28	1896	3.33	727	562	0.99	23685	41.63
678	175	0.31	2071	3.64	728	590	1.04	24275	42.67
679	179	0.31	2250	3.95	729	589	1.04	24864	43.70
680	149	0.26	2399	4.22	730	598	1.05	25462	44.75
681	173	0.30	2572	4.52	731	599	1.05	26061	45.80
682	190	0.33	2762	4.85	732	572	1.01	26633	46.81
683	233	0.41	2995	5.26	733	566	0.99	27199	47.80
684	226	0.40	3221	5.66	734	637	1.12	27836	48.92
685	241	0.42	3462	6.08	735	565	0.99	28401	49.92
686	271	0.48	3733	6.56	736	587	1.03	28988	50.95
687	254	0.45	3987	7.01	737	571	1.00	29559	51.95
688	310	0.54	4297	7.55	738	577	1.01	30136	52.97
689	323	0.57	4620	8.12	739	560	0.98	30696	53.95
690	323	0.57	4943	8.69	740	548	0.96	31244	54.91
691	343	0.60	5286	9.29	741	539	0.95	31783	55.86
692	381	0.67	5667	9.96	742	549	0.96	32332	56.83
693	410	0.72	6077	10.68	743	539	0.95	32871	57.77
694	352	0.62	6429	11.30	744	572	1.01	33443	58.78
695	397	0.70	6826	12.00	745	530	0.93	33973	59.71
696	441	0.78	7267	12.77	746	577	1.01	34550	60.72
697	436	0.77	7703	13.54	747	531	0.93	35081	61.66
~ · ·			8176	14.37	748	519	0.91	35600	62.57
698	473	0.83	<u> </u>	14.)/	/40		0.71		0/1/

 Table F.3. Scale Score Distribution—Mathematics Grade 5

SS	Freq.	%	Cum. Freq.	Cum. %	SS	Freq.	%	Cum. Freq.	Cum. %
750	535	0.94	36671	64.45	801	161	0.28	55019	96.70
751	502	0.94	37173	65.33	801	136	0.28	55155	96.70 96.94
752	523	0.88	37696	66.25	802 803	130	0.24	55279	90.94 97.16
	525 528	0.92	37696 38224	67.18	803 804	124		55396	97.16 97.36
753	528 510		38224 38734	68.08	804 805	117	0.21		97.56 97.56
754		0.90					0.20	55508	
755	490	0.86	39224	68.94	806	119	0.21	55627	97.77
756	496	0.87	39720	69.81	807	111	0.20	55738	97.96
757	488	0.86	40208	70.67	808	77	0.14	55815	98.10
758	495	0.87	40703	71.54	809	78	0.14	55893	98.24
759	484	0.85	41187	72.39	810	84	0.15	55977	98.38
760	445	0.78	41632	73.17	811	61	0.11	56038	98.49
761	454	0.80	42086	73.97	812	91	0.16	56129	98.65
762	476	0.84	42562	74.81	813	72	0.13	56201	98.78
763	506	0.89	43068	75.70	814	48	0.08	56249	98.86
764	477	0.84	43545	76.53	815	58	0.10	56307	98.96
765	443	0.78	43988	77.31	816	68	0.12	56375	99.08
766	465	0.82	44453	78.13	817	30	0.05	56405	99.14
767	437	0.77	44890	78.90	818	38	0.07	56443	99.20
768	452	0.79	45342	79.69	819	29	0.05	56472	99.25
769	469	0.82	45811	80.52	820	32	0.06	56504	99.31
770	449	0.79	46260	81.31	821	23	0.04	56527	99.35
771	390	0.69	46650	81.99	822	22	0.04	56549	99.39
772	413	0.73	47063	82.72	823	30	0.05	56579	99.44
773	398	0.70	47461	83.42	824	30	0.05	56609	99.50
774	366	0.64	47827	84.06	825	24	0.04	56633	99.54
775	367	0.65	48194	84.71	826	16	0.03	56649	99.57
776	344	0.60	48538	85.31	827	24	0.04	56673	99.61
777	391	0.69	48929	86.00	828	17	0.03	56690	99.64
778	365	0.64	49294	86.64	829	16	0.03	56706	99.67
779	357	0.63	49651	87.27	830	6	0.01	56712	99.68
780	350	0.62	50001	87.88	831	14	0.02	56726	99.70
781	356	0.63	50357	88.51	832	12	0.02	56738	99.72
782	310	0.54	50667	89.05	833	7	0.01	56745	99.73
783	297	0.52	50964	89.57	834	11	0.02	56756	99.75
784	332	0.58	51296	90.16	835	10	0.02	56766	99.77
785	290	0.51	51586	90.67	836	14	0.02	56780	99.80
786	281	0.49	51867	91.16	837	17	0.03	56797	99.83
787	281	0.49	52148	91.65	838	17	0.03	56814	99.86
788	277	0.49	52425	92.14	839	2	0.00	56816	99.86
789	237	0.42	52662	92.56	840	3	0.01	56819	99.86
790	247	0.43	52909	92.99	841	7	0.01	56826	99.88
791	231	0.41	53140	93.40	842	3	0.01	56829	99.88
792	226	0.40	53366	93.80	843	4	0.01	56833	99.89
793	202	0.36	53568	94.15	844	4	0.01	56837	99.90
794	234	0.41	53802	94.56	846	1	0.00	56838	99.90
795	200	0.35	54002	94.91	847	2	0.00	56840	99.90
796	168	0.30	54170	95.21	850	56	0.10	56896	100.00
797	197	0.35	54367	95.56					
798	185	0.33	54552	95.88					
799	166	0.29	54718	96.17					
800	140	0.25	54858	96.42					

	L .H. Deal		Distribution	maintin	alles Graue o				
SS	Freq.	%	Cum. Freq.	Cum. %	SS	Freq.	%	Cum. Freq.	Cum. %
650	444	0.79	444	0.79	700	527	0.94	11672	20.88
651	23	0.04	467	0.84	701	494	0.88	12166	21.76
652	2	0.00	469	0.84	702	520	0.93	12686	22.69
653	35	0.06	504	0.90	703	547	0.98	13233	23.67
654	3	0.00	507	0.91	704	562	1.01	13795	24.67
655	132	0.01	639	1.14	705	553	0.99	14348	25.66
656	25	0.04	664	1.19	706	534	0.96	14882	26.62
657	26	0.04	690	1.19	700	555	0.99	15437	27.61
658	55	0.05	745	1.33	708	567	1.01	16004	28.62
659	21	0.10	745	1.33	708	514	0.92	16518	28.02 29.54
660	21 9	0.04	700	1.37	710	572	1.02	17090	30.57
661	53	0.09	828	1.48	711	579 528	1.04	17669	31.60
662	142	0.25	970	1.73	712	528	0.94	18197	32.55
663	37	0.07	1007	1.80	713	553	0.99	18750	33.53
664	94	0.17	1101	1.97	714	573	1.02	19323	34.56
665	48	0.09	1149	2.05	715	555	0.99	19878	35.55
666	69	0.12	1218	2.18	716	537	0.96	20415	36.51
667	170	0.30	1388	2.48	717	589	1.05	21004	37.57
668	66	0.12	1454	2.60	718	605	1.08	21609	38.65
669	125	0.22	1579	2.82	719	549	0.98	22158	39.63
670	111	0.20	1690	3.02	720	538	0.96	22696	40.59
671	81	0.14	1771	3.17	721	568	1.02	23264	41.61
672	167	0.30	1938	3.47	722	583	1.04	23847	42.65
673	85	0.15	2023	3.62	723	604	1.08	24451	43.73
674	223	0.40	2246	4.02	724	592	1.06	25043	44.79
675	155	0.28	2401	4.29	725	666	1.19	25709	45.98
676	181	0.32	2582	4.62	726	569	1.02	26278	47.00
677	138	0.25	2720	4.86	727	581	1.04	26859	48.04
678	268	0.48	2988	5.34	728	589	1.05	27448	49.09
679	210	0.38	3198	5.72	729	599	1.07	28047	50.16
680	223	0.40	3421	6.12	730	625	1.12	28672	51.28
681	353	0.63	3774	6.75	731	600	1.07	29272	52.35
682	272	0.49	4046	7.24	732	626	1.12	29898	53.47
683	307	0.55	4353	7.79	733	623	1.11	30521	54.59
684	336	0.60	4689	8.39	734	621	1.11	31142	55.70
685	335	0.60	5024	8.99	735	593	1.06	31735	56.76
686	362	0.65	5386	9.63	736	656	1.17	32391	57.93
687	339	0.65	5725	10.24	737	606	1.08	32997	59.01
688	384	0.69	6109	10.24	738	616	1.10	33613	60.12
689	427	0.76	6536	11.69	739	636	1.14	34249	61.25
690	394	0.70	6930	12.39	740	629	1.14	34878	62.38
690 691	419	0.70	7349	12.39	740	613	1.12	34878	63.48
692	419	0.73	7349	13.14	741	571	1.10	36062	64.50
692 693	412 426	0.74 0.76	8187	13.88 14.64	742	608	1.02	36670	65.58
693 694	426	0.76	8187 8659	14.64 15.49	743	625	1.09	37295	66.70
					744 745	585	1.12	37293	67.75
695	465	0.83	9124	16.32		585 602			
696	487	0.87	9611	17.19	746		1.08	38482	68.82
697	492	0.88	10103	18.07	747	553 526	0.99	39035	69.81 70.77
698	507	0.91	10610	18.98	748	536	0.96	39571	70.77
699	535	0.96	11145	19.93	749	554	0.99	40125	71.76

 Table F.4. Scale Score Distribution—Mathematics Grade 6

66	Fran	%	Cum Erac	Cum 0/	SS	Frac	0/	Cum Erac	C
SS 750	Freq.		Cum. Freq.	Cum. %	-	Freq.	%	Cum. Freq.	Cun
750	577	1.03	40702	72.80	801 802	64	0.11	55035	98
751	519	0.93	41221	73.72	802	61	0.11	55096	98
752	547	0.98	41768	74.70	803	55	0.10	55151	98
753	514	0.92	42282	75.62	804	59	0.11	55210	98
754	512	0.92	42794	76.54	805	45	0.08	55255	98
755	513	0.92	43307	77.45	806	44	0.08	55299	98
756	500	0.89	43807	78.35	807	33	0.06	55332	98
757	519	0.93	44326	79.28	808	30	0.05	55362	99
758	478	0.85	44804	80.13	809	31	0.06	55393	99
759	504	0.90	45308	81.03	810	32	0.06	55425	99
760	493	0.88	45801	81.91	811	37	0.07	55462	99
761	451	0.81	46252	82.72	812	35	0.06	55497	99
762	426	0.76	46678	83.48	813	22	0.04	55519	99
763	397	0.71	47075	84.19	814	23	0.04	55542	99
764	441	0.79	47516	84.98	815	35	0.06	55577	99
765	396	0.71	47912	85.69	816	27	0.05	55604	99
766	385	0.69	48297	86.38	817	20	0.04	55624	99
767	380	0.68	48677	87.06	818	19	0.03	55643	99
768	358	0.64	49035	87.70	819	27	0.05	55670	99
769	349	0.62	49384	88.32	820	14	0.03	55684	99
770	308	0.55	49692	88.87	821	15	0.03	55699	99
771	289	0.52	49981	89.39	822	20	0.04	55719	99
772	313	0.56	50294	89.95	823	6	0.01	55725	99
773	324	0.58	50618	90.53	823 824	7	0.01	55732	99
774	312	0.56	50930	91.09	825	11	0.01	55743	99
775	291	0.50	51221	91.61	825 826	9	0.02	55752	99
776	291 245	0.32	51221	91.01	820 827	9 7	0.02	55759	99
777	243	0.44	51694	92.03 92.45	827	7	0.01	55766	99
									99
778	251	0.45	51945	92.90	829 820	9 10	0.02	55775	
779	224	0.40	52169	93.30	830	10	0.02	55785	99
780	214	0.38	52383	93.69	831	1	0.00	55786	99
781	224	0.40	52607	94.09	832	10	0.02	55796	99
782	164	0.29	52771	94.38	833	4	0.01	55800	99
783	188	0.34	52959	94.72	834	4	0.01	55804	99
784	168	0.30	53127	95.02	835	2	0.00	55806	99
785	158	0.28	53285	95.30	836	9	0.02	55815	99
786	185	0.33	53470	95.63	837	3	0.01	55818	99
787	168	0.30	53638	95.93	838	3	0.01	55821	99
788	144	0.26	53782	96.19	839	5	0.01	55826	99
789	126	0.23	53908	96.41	840	5	0.01	55831	99
790	130	0.23	54038	96.65	842	9	0.02	55840	99
791	109	0.19	54147	96.84	843	9	0.02	55849	99
792	116	0.21	54263	97.05	844	2	0.00	55851	99
793	111	0.20	54374	97.25	846	4	0.01	55855	99
794	88	0.16	54462	97.40	847	2	0.00	55857	99
795	100	0.18	54562	97.58	848	1	0.00	55858	99
796	81	0.14	54643	97.73	849	1	0.00	55859	99
797	96	0.17	54739	97.90	850	54	0.10	55913	10
798	84	0.15	54823	98.05				•	
799	76	0.14	54899	98.19					
800	70	0.13	54971	98.32					

650 651 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670	151 19 3 17 30 5 21 6 30 20 4 36 8 6 18 36 47 26 40 40	0.28 0.04 0.01 0.03 0.06 0.01 0.04 0.01 0.06 0.04 0.01 0.07 0.01 0.03 0.07 0.09	$ \begin{array}{r} 151 \\ 170 \\ 173 \\ 190 \\ 220 \\ 225 \\ 246 \\ 252 \\ 282 \\ 302 \\ 306 \\ 342 \\ 350 \\ 356 \\ 374 \\ 410 \\ \end{array} $	$\begin{array}{c} 0.28\\ 0.31\\ 0.32\\ 0.35\\ 0.41\\ 0.42\\ 0.45\\ 0.47\\ 0.52\\ 0.56\\ 0.57\\ 0.63\\ 0.65\\ 0.66\\ 0.66\\ 0.66\end{array}$	701 702 703 704 705 706 707 708 709 710 711 712 713	574 580 616 667 611 694 670 675 688 762 759 728	$1.06 \\ 1.07 \\ 1.14 \\ 1.23 \\ 1.13 \\ 1.28 \\ 1.24 \\ 1.25 \\ 1.27 \\ 1.41 \\ 1.40$	7657 8237 8853 9520 10131 10825 11495 12170 12858 13620 14379	14.14 15.21 16.35 17.58 18.71 19.99 21.23 22.48 23.75 25.15 26.55
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669	3 17 30 5 21 6 30 20 4 36 8 6 18 36 47 26	0.01 0.03 0.06 0.01 0.04 0.01 0.06 0.04 0.01 0.07 0.01 0.03 0.07 0.09	173 190 220 225 246 252 282 302 306 342 350 356 374	$\begin{array}{c} 0.32 \\ 0.35 \\ 0.41 \\ 0.42 \\ 0.45 \\ 0.47 \\ 0.52 \\ 0.56 \\ 0.57 \\ 0.63 \\ 0.65 \\ 0.66 \end{array}$	703 704 705 706 707 708 709 710 711 712	616 667 611 694 670 675 688 762 759	1.14 1.23 1.13 1.28 1.24 1.25 1.27 1.41 1.40	8853 9520 10131 10825 11495 12170 12858 13620	16.35 17.58 18.71 19.99 21.23 22.48 23.75 25.15
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669	$ \begin{array}{r} 17 \\ 30 \\ 5 \\ 21 \\ 6 \\ 30 \\ 20 \\ 4 \\ 36 \\ 8 \\ 6 \\ 18 \\ 36 \\ 47 \\ 26 \\ \end{array} $	0.03 0.06 0.01 0.04 0.01 0.06 0.04 0.01 0.07 0.01 0.03 0.07 0.09	190 220 225 246 252 282 302 306 342 350 356 374	$\begin{array}{c} 0.35\\ 0.41\\ 0.42\\ 0.45\\ 0.47\\ 0.52\\ 0.56\\ 0.57\\ 0.63\\ 0.65\\ 0.66\end{array}$	704 705 706 707 708 709 710 711 712	667 611 694 670 675 688 762 759	1.23 1.13 1.28 1.24 1.25 1.27 1.41 1.40	9520 10131 10825 11495 12170 12858 13620	17.58 18.71 19.99 21.23 22.48 23.75 25.15
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669	30 5 21 6 30 20 4 36 8 6 18 36 47 26	0.06 0.01 0.04 0.01 0.06 0.04 0.01 0.07 0.01 0.03 0.07 0.09	220 225 246 252 282 302 306 342 350 356 374	$\begin{array}{c} 0.41 \\ 0.42 \\ 0.45 \\ 0.47 \\ 0.52 \\ 0.56 \\ 0.57 \\ 0.63 \\ 0.65 \\ 0.66 \end{array}$	705 706 707 708 709 710 711 712	611 694 670 675 688 762 759	1.13 1.28 1.24 1.25 1.27 1.41 1.40	10131 10825 11495 12170 12858 13620	18.71 19.99 21.23 22.48 23.75 25.15
656 657 658 659 660 661 662 663 664 665 666 667 668 669	5 21 6 30 20 4 36 8 6 18 36 47 26	$\begin{array}{c} 0.01 \\ 0.04 \\ 0.01 \\ 0.06 \\ 0.04 \\ 0.01 \\ 0.07 \\ 0.01 \\ 0.03 \\ 0.07 \\ 0.09 \end{array}$	225 246 252 282 302 306 342 350 356 374	$\begin{array}{c} 0.42 \\ 0.45 \\ 0.47 \\ 0.52 \\ 0.56 \\ 0.57 \\ 0.63 \\ 0.65 \\ 0.66 \end{array}$	706 707 708 709 710 711 712	694 670 675 688 762 759	1.28 1.24 1.25 1.27 1.41 1.40	10825 11495 12170 12858 13620	19.99 21.23 22.48 23.75 25.15
656 657 658 659 660 661 662 663 664 665 666 667 668 669	5 21 6 30 20 4 36 8 6 18 36 47 26	$\begin{array}{c} 0.01 \\ 0.04 \\ 0.01 \\ 0.06 \\ 0.04 \\ 0.01 \\ 0.07 \\ 0.01 \\ 0.03 \\ 0.07 \\ 0.09 \end{array}$	225 246 252 282 302 306 342 350 356 374	$\begin{array}{c} 0.42 \\ 0.45 \\ 0.47 \\ 0.52 \\ 0.56 \\ 0.57 \\ 0.63 \\ 0.65 \\ 0.66 \end{array}$	707 708 709 710 711 712	670 675 688 762 759	1.24 1.25 1.27 1.41 1.40	11495 12170 12858 13620	21.23 22.48 23.75 25.15
657 658 659 660 661 662 663 664 665 666 667 668 669	21 6 30 20 4 36 8 6 18 36 47 26	$\begin{array}{c} 0.04\\ 0.01\\ 0.06\\ 0.04\\ 0.01\\ 0.07\\ 0.01\\ 0.01\\ 0.03\\ 0.07\\ 0.09\\ \end{array}$	246 252 282 302 306 342 350 356 374	$\begin{array}{c} 0.45 \\ 0.47 \\ 0.52 \\ 0.56 \\ 0.57 \\ 0.63 \\ 0.65 \\ 0.66 \end{array}$	708 709 710 711 712	675 688 762 759	1.25 1.27 1.41 1.40	12170 12858 13620	22.48 23.75 25.15
658 659 660 661 662 663 664 665 666 667 668 669	6 30 20 4 36 8 6 18 36 47 26	$\begin{array}{c} 0.01 \\ 0.06 \\ 0.04 \\ 0.01 \\ 0.07 \\ 0.01 \\ 0.01 \\ 0.03 \\ 0.07 \\ 0.09 \end{array}$	252 282 302 306 342 350 356 374	$\begin{array}{c} 0.47 \\ 0.52 \\ 0.56 \\ 0.57 \\ 0.63 \\ 0.65 \\ 0.66 \end{array}$	708 709 710 711 712	675 688 762 759	1.25 1.27 1.41 1.40	12170 12858 13620	22.48 23.75 25.15
659 660 661 662 663 663 664 665 666 667 668 669	30 20 4 36 8 6 18 36 47 26	$\begin{array}{c} 0.06 \\ 0.04 \\ 0.01 \\ 0.07 \\ 0.01 \\ 0.01 \\ 0.03 \\ 0.07 \\ 0.09 \end{array}$	282 302 306 342 350 356 374	0.52 0.56 0.57 0.63 0.65 0.66	710 711 712	762 759	1.27 1.41 1.40	13620	25.15
660 661 662 663 664 665 666 667 668 669	20 4 36 8 6 18 36 47 26	$\begin{array}{c} 0.04 \\ 0.01 \\ 0.07 \\ 0.01 \\ 0.01 \\ 0.03 \\ 0.07 \\ 0.09 \end{array}$	302 306 342 350 356 374	0.56 0.57 0.63 0.65 0.66	710 711 712	762 759	1.41 1.40		25.15
 661 662 663 664 665 666 667 668 669 	4 36 8 6 18 36 47 26	0.01 0.07 0.01 0.01 0.03 0.07 0.09	306 342 350 356 374	0.57 0.63 0.65 0.66	711 712	759	1.40		
662 663 664 665 666 667 668 669	36 8 6 18 36 47 26	0.07 0.01 0.01 0.03 0.07 0.09	342 350 356 374	0.63 0.65 0.66	712				
 663 664 665 666 667 668 669 	8 6 18 36 47 26	0.01 0.01 0.03 0.07 0.09	350 356 374	0.65 0.66			1.34	15107	27.90
664 665 666 667 668 669	6 18 36 47 26	0.01 0.03 0.07 0.09	356 374	0.66		737	1.36	15844	29.26
665 666 667 668 669	18 36 47 26	0.03 0.07 0.09	374		714	745	1.38	16589	30.64
666 667 668 669	36 47 26	0.07 0.09		0.69	715	712	1.31	17301	31.95
667 668 669	47 26	0.09	410	0.76	716	731	1.35	18032	33.30
668 669	26		410	0.84	710	744	1.35	18032	34.68
669		0.05	483	0.89	718	702	1.30	19478	35.97
	40	0.05	523	0.89	719	754	1.30	20232	37.36
070	32	0.07	555	1.02	71)	735	1.36	20252	38.72
671	63	0.00	618	1.02	720	744	1.30	20907	40.10
672			691		721	705	1.37	21711 22416	40.10
	73	0.13	752	1.28 1.39	722	703	1.30	22410	41.40
673	61 27	0.11			723				
674	27	0.05	779	1.44	724	737	1.36	23854	44.05
675	69	0.13	848	1.57		722	1.33	24576	45.39
676	78	0.14	926	1.71	726	718	1.33	25294	46.71
677	71	0.13	997	1.84	727	667	1.23	25961	47.94
678	69	0.13	1066	1.97	728	676	1.25	26637	49.19
679	104	0.19	1170	2.16	729	656	1.21	27293	50.40
680	98	0.18	1268	2.34	730	688	1.27	27981	51.68
681	107	0.20	1375	2.54	731	688	1.27	28669	52.95
682	140	0.26	1515	2.80	732	700	1.29	29369	54.24
683	138	0.25	1653	3.05	733	632	1.17	30001	55.41
684	143	0.26	1796	3.32	734	618	1.14	30619	56.55
685	188	0.35	1984	3.66	735	654	1.21	31273	57.75
686	202	0.37	2186	4.04	736	595	1.10	31868	58.85
687	205	0.38	2391	4.42	737	661	1.22	32529	60.07
688	238	0.44	2629	4.86	738	645	1.19	33174	61.27
689	244	0.45	2873	5.31	739	670	1.24	33844	62.50
690	242	0.45	3115	5.75	740	632	1.17	34476	63.67
691	281	0.52	3396	6.27	741	632	1.17	35108	64.84
692	314	0.58	3710	6.85	742	615	1.14	35723	65.97
693	336	0.62	4046	7.47	743	618	1.14	36341	67.11
694	370	0.68	4416	8.16	744	612	1.13	36953	68.24
695	387	0.71	4803	8.87	745	594	1.10	37547	69.34
696	391	0.72	5194	9.59	746	595	1.10	38142	70.44
697	422	0.78	5616	10.37	747	605	1.12	38747	71.56
698	435	0.80	6051	11.17	748	595	1.10	39342	72.66
699	502	0.93	6553	12.10	749	589	1.09	39931	73.74
700	530	0.98	7083	13.08	750	565	1.04	40496	74.79

 Table F.5. Scale Score Distribution—Mathematics Grade 7

00	Б	0/		C N	-	00	Г	0/		<u> </u>
SS	Freq.	%	Cum. Freq.	Cum. %	-	SS	Freq.	%	Cum. Freq.	Cum. %
751	541	1.00	41037	75.79		802	33	0.06	53839	99.43
752	559	1.03	41596	76.82		803	38	0.07	53877	99.50
753	534	0.99	42130	77.81		804	25	0.05	53902	99.55
754	535	0.99	42665	78.79		805	22	0.04	53924	99.59
755	558	1.03	43223	79.82		806	17	0.03	53941	99.62
756	468	0.86	43691	80.69		807	25	0.05	53966	99.66
757	490	0.90	44181	81.59		808	21	0.04	53987	99.70
758	495	0.91	44676	82.51		809	6	0.01	53993	99.71
759	438	0.81	45114	83.32		810	9	0.02	54002	99.73
760	469	0.87	45583	84.18		811	18	0.03	54020	99.76
761	447	0.83	46030	85.01		812	12	0.02	54032	99.79
762	447	0.83	46477	85.83		813	7	0.01	54039	99.80
763	443	0.82	46920	86.65		814	6	0.01	54045	99.81
764	401	0.74	47321	87.39		815	5	0.01	54050	99.82
765	404	0.75	47725	88.14		816	5	0.01	54055	99.83
766	347	0.64	48072	88.78		817	9	0.02	54064	99.84
767	356	0.66	48428	89.44		818	7	0.01	54071	99.86
768	363	0.67	48791	90.11		819	9	0.02	54080	99.87
769	312	0.58	49103	90.68		820	3	0.01	54083	99.88
770	307	0.57	49410	91.25		821	4	0.01	54087	99.89
771	281	0.52	49691	91.77		822	3	0.01	54090	99.89
772	268	0.49	49959	92.26		823	7	0.01	54097	99.91
773	279	0.52	50238	92.78		824	2	0.00	54099	99.91
774	235	0.43	50473	93.21		825	4	0.01	54103	99.92
775	245	0.45	50718	93.67		826	6	0.01	54109	99.93
776	248	0.46	50966	94.12		827	2	0.00	54111	99.93
777	231	0.43	51197	94.55		828	4	0.01	54115	99.94
778	196	0.36	51393	94.91		830	1	0.00	54116	99.94
779	218	0.40	51611	95.31		831	7	0.01	54123	99.95
780	199	0.37	51810	95.68		832	1	0.00	54124	99.96
781	204	0.38	52014	96.06		833	4	0.01	54128	99.96
782	167	0.31	52181	96.37		834	1	0.00	54129	99.96
783	180	0.33	52361	96.70		838	1	0.00	54130	99.97
784	143	0.26	52504	96.96		839	1	0.00	54131	99.97
785	131	0.24	52635	97.21		841	1	0.00	54132	99.97
786	122	0.23	52757	97.43		843	1	0.00	54133	99.97
787	108	0.20	52865	97.63		845	1	0.00	54134	99.97
788	112	0.21	52977	97.84		846	1	0.00	54135	99.98
789	98	0.18	53075	98.02		847	1	0.00	54136	99.98
790	101	0.19	53176	98.20		850	12	0.02	54148	100.00
791	75	0.14	53251	98.34						
792	87	0.16	53338	98.50						
793	81	0.15	53419	98.65						
794	58	0.11	53477	98.76						
795	57	0.11	53534	98.87						
796	48	0.09	53582	98.95						
797	71	0.03	53653	99.09						
798	47	0.09	53700	99.17						
799	49	0.09	53749	99.26						
800	30	0.09	53779	99.20 99.32						
800 801	27	0.00	53806	99.32 99.37						
001	21	0.05	55000	77.51						

	L IOI Deal		Distribution		and Graue o				
SS	Freq.	%	Cum. Freq.	Cum. %	SS	Freq.	%	Cum. Freq.	Cum. %
650	645	1.24	645	1.24	700	494	0.95	12849	24.69
651	40	0.08	685	1.32	701	501	0.96	13350	25.66
652	31	0.06	716	1.38	702	475	0.91	13825	26.57
653	52	0.10	768	1.48	703	478	0.92	14303	27.49
654	77	0.15	845	1.62	704	526	1.01	14829	28.50
655	52	0.10	897	1.72	705	482	0.93	15311	29.42
656	75	0.14	972	1.87	706	492	0.95	15803	30.37
657	97	0.19	1069	2.05	707	471	0.91	16274	31.27
658	64	0.12	1133	2.18	708	551	1.06	16825	32.33
659	54	0.12	1187	2.28	709	482	0.93	17307	33.26
660	79	0.15	1266	2.43	710	524	1.01	17831	34.27
661	86	0.15	1352	2.60	710	524	1.01	18355	35.27
662	88	0.17	1352	2.00	712	468	0.90	18333	36.17
663	102	0.17	1542	2.96	712	483	0.93	19306	37.10
664	102	0.20	1676	3.22	713	521	1.00	19300	38.10
					714	500	0.96	20327	39.06
665	139	0.27 0.22	1815	3.49 3.71	715	500 464	0.96	20327 20791	39.06 39.96
666	115		1930		710		0.89	20791 21282	
667	146	0.28	2076	3.99		491			40.90
668	135	0.26	2211	4.25	718	430	0.83	21712	41.72
669	152	0.29	2363	4.54	719	451	0.87	22163	42.59
670	164	0.32	2527	4.86	720	474	0.91	22637	43.50
671	168	0.32	2695	5.18	721	471	0.91	23108	44.41
672	173	0.33	2868	5.51	722	475	0.91	23583	45.32
673	184	0.35	3052	5.87	723	454	0.87	24037	46.19
674	238	0.46	3290	6.32	724	426	0.82	24463	47.01
675	216	0.42	3506	6.74	725	450	0.86	24913	47.88
676	199	0.38	3705	7.12	726	436	0.84	25349	48.71
677	257	0.49	3962	7.61	727	452	0.87	25801	49.58
678	217	0.42	4179	8.03	728	412	0.79	26213	50.37
679	253	0.49	4432	8.52	729	460	0.88	26673	51.26
680	319	0.61	4751	9.13	730	450	0.86	27123	52.12
681	288	0.55	5039	9.68	731	447	0.86	27570	52.98
682	247	0.47	5286	10.16	732	415	0.80	27985	53.78
683	371	0.71	5657	10.87	733	426	0.82	28411	54.60
684	346	0.66	6003	11.54	734	398	0.76	28809	55.36
685	353	0.68	6356	12.21	735	420	0.81	29229	56.17
686	338	0.65	6694	12.86	736	434	0.83	29663	57.00
687	370	0.71	7064	13.58	737	431	0.83	30094	57.83
688	381	0.73	7445	14.31	738	416	0.80	30510	58.63
689	415	0.80	7860	15.10	739	426	0.82	30936	59.45
690	423	0.81	8283	15.92	740	432	0.83	31368	60.28
691	412	0.79	8695	16.71	741	424	0.81	31792	61.10
692	453	0.87	9148	17.58	742	406	0.78	32198	61.88
693	437	0.84	9585	18.42	743	454	0.87	32652	62.75
694	468	0.90	10053	19.32	744	402	0.77	33054	63.52
695	466	0.90	10519	20.21	745	395	0.76	33449	64.28
696	400	0.90	10919	20.21	746	393	0.73	33831	65.01
697	455	0.85	11417	21.03	740	407	0.73	34238	65.80
697 698	403	0.89	11417	21.94 22.78	747	407	0.78	34238	66.58
699	500	0.96	12355	23.74	749	391	0.75	35038	67.33

 Table F.6. Scale Score Distribution—Mathematics Grade 8

00		0/		a <i>a</i> /			<u> </u>		<u> </u>
SS	Freq.	%	Cum. Freq.	Cum. %	SS	Freq.	%	Cum. Freq.	Cum. 9
750	366	0.70	35404	68.04	801	132	0.25	49211	94.57
751	407	0.78	35811	68.82	802	130	0.25	49341	94.82
752	365	0.70	36176	69.52	803	115	0.22	49456	95.04
753	389	0.75	36565	70.27	804	111	0.21	49567	95.26
754	371	0.71	36936	70.98	805	121	0.23	49688	95.49
755	388	0.75	37324	71.73	806	124	0.24	49812	95.73
756	372	0.71	37696	72.44	807	90	0.17	49902	95.90
757	367	0.71	38063	73.15	808	116	0.22	50018	96.12
758	387	0.74	38450	73.89	809	91	0.17	50109	96.30
759	350	0.67	38800	74.56	810	86	0.17	50195	96.46
760	390	0.75	39190	75.31	811	95	0.18	50290	96.64
761	374	0.72	39564	76.03	812	77	0.15	50367	96.79
762	339	0.65	39903	76.68	813	84	0.16	50451	96.95
763	345	0.66	40248	77.35	814	82	0.16	50533	97.11
764	345	0.66	40593	78.01	815	63	0.12	50596	97.23
765	297	0.57	40890	78.58	816	67	0.13	50663	97.36
766	333	0.64	41223	79.22	817	61	0.12	50724	97.48
767	299	0.57	41522	79.79	818	64	0.12	50788	97.60
768	322	0.62	41844	80.41	819	65	0.12	50853	97.73
769	310	0.60	42154	81.01	820	65	0.12	50918	97.85
770	325	0.62	42479	81.63	821	64	0.12	50982	97.97
771	306	0.59	42785	82.22	822	54	0.10	51036	98.08
772	271	0.52	43056	82.74	823	44	0.08	51080	98.16
773	287	0.52	43343	83.29	824	69	0.13	51149	98.30
774	271	0.52	43614	83.82	825	48	0.09	51197	98.39
775	322	0.62	43936	84.43	826	45	0.09	51242	98.47
776	277	0.53	44213	84.97	827	48	0.09	51242	98.5
777	265	0.55	44478	85.48	828	24	0.05	51314	98.61
778	258	0.50	44736	85.97	829	36	0.05	51350	98.68
779	238	0.30	44980	86.44	830	40	0.07	51390	98.76
780	261	0.50	45241	86.94	831	42	0.08	51432	98.84
781	243	0.30	45484	87.41	831	42 29	0.08	51452	98.89
782	243 248	0.47	45732	87.89	832	29 27	0.00	51401	98.95
782 783	248	0.48	45752	87.89 88.29	833 834	34	0.03	51488	98.9. 99.01
784 785	211	0.41 0.47	46155	88.70 89.17	835 836	24 30	0.05	51546 51576	99.06
785	246		46401		836 837	30	0.06	51576 51590	99.12
786	208	0.40	46609	89.57	837	14	0.03		99.14
787	209	0.40	46818	89.97 00.36	838 830	18 24	0.03	51608	99.18
788	203	0.39	47021	90.36	839	34	0.07	51642	99.24
789	221	0.42	47242	90.79	840	20	0.04	51662	99.28
790	206	0.40	47448	91.18	841	19	0.04	51681	99.32
791	172	0.33	47620	91.51	842	18	0.03	51699	99.35
792	180	0.35	47800	91.86	843	27	0.05	51726	99.40
793	188	0.36	47988	92.22	844	10	0.02	51736	99.42
794	170	0.33	48158	92.55	845	15	0.03	51751	99.45
795	160	0.31	48318	92.85	846	23	0.04	51774	99.50
796	171	0.33	48489	93.18	847	10	0.02	51784	99.52
797	146	0.28	48635	93.46	848	11	0.02	51795	99.54
798	161	0.31	48796	93.77	849	15	0.03	51810	99.57
799	147	0.28	48943	94.06	850	226	0.43	52036	100.0
800	136	0.26	49079	94.32					

Table	r./. Sca	ie Score	Distribution	-ELA Grade 5					
SS	Freq.	%	Cum. Freq.	Cum. %	SS	Freq.	%	Cum. Freq.	Cum. %
650	882	1.58	882	1.58	700	326	0.58	12696	22.78
651	82	0.15	964	1.73	701	343	0.62	13039	23.39
652	78	0.14	1042	1.87	702	324	0.58	13363	23.98
653	72	0.13	1114	2.00	703	369	0.66	13732	24.64
654	81	0.15	1195	2.14	704	383	0.69	14115	25.32
655	71	0.13	1266	2.27	705	336	0.60	14451	25.93
656	88	0.16	1354	2.43	706	338	0.61	14789	26.53
657	96	0.17	1450	2.60	707	338	0.61	15127	27.14
658	108	0.19	1558	2.80	708	362	0.65	15489	27.79
659	110	0.20	1668	2.99	709	368	0.66	15857	28.45
660	127	0.23	1795	3.22	710	369	0.66	16226	29.11
661	131	0.24	1926	3.46	711	365	0.65	16591	29.77
662	140	0.25	2066	3.71	712	387	0.69	16978	30.46
663	151	0.27	2217	3.98	713	381	0.68	17359	31.14
664	154	0.28	2371	4.25	714	381	0.68	17740	31.83
665	167	0.30	2538	4.55	715	390	0.70	18130	32.53
666	170	0.31	2708	4.86	716	369	0.66	18499	33.19
667	174	0.31	2882	5.17	717	406	0.73	18905	33.92
668	225	0.40	3107	5.57	718	431	0.77	19336	34.69
669	197	0.35	3304	5.93	719	444	0.80	19780	35.49
670	199	0.36	3503	6.28	720	405	0.73	20185	36.21
671	233	0.30	3736	6.70	720	415	0.74	20600	36.96
672	233	0.40	3960	7.10	721	403	0.74	21003	37.68
673	246	0.40	4206	7.55	723	446	0.80	21005	38.48
674	240	0.43	4447	7.98	723	411	0.74	21860	39.22
675	276	0.45	4723	8.47	725	447	0.80	22307	40.02
676	260	0.30	4983	8.94	726	435	0.78	22742	40.80
677	283	0.51	5266	9.45	720	471	0.85	23213	41.65
678	203	0.53	5560	9.98	728	455	0.82	23668	42.46
679	294	0.53	5856	10.51	720	444	0.80	24112	43.26
680	290	0.53	6148	11.03	730	462	0.83	24574	44.09
681	314	0.52	6462	11.59	730	464	0.83	25038	44.92
682	314	0.56	6772	12.15	731	439	0.83	25038 25477	45.71
683	304	0.50	7076	12.13	732	459	0.79	25936	46.53
684	304 318		7394		733	439	0.82	23930 26417	40.33
		0.57		13.27	734	466	0.80	26883	48.23
685 686	324	0.58	7718	13.85	735	400	0.84	20883	49.02
686 (87	323	0.58	8041	14.43					
687	317	0.57	8358	15.00	737	494 476	0.89	27819	49.91
688	302	0.54	8660	15.54	738	476	0.85	28295	50.77
689	345	0.62	9005	16.16	739	455	0.82	28750	51.58
690	314	0.56	9319	16.72	740	440	0.79	29190	52.37
691	305	0.55	9624	17.27	741	481	0.86	29671	53.23
692	331	0.59	9955	17.86	742	505	0.91	30176	54.14
693	330	0.59	10285	18.45	743	485	0.87	30661	55.01
694	353	0.63	10638	19.09	744	481	0.86	31142	55.87
695	351	0.63	10989	19.72	745	463	0.83	31605	56.70
696	371	0.67	11360	20.38	746	510	0.92	32115	57.62
697	310	0.56	11670	20.94	747	482	0.86	32597	58.48
698	327	0.59	11997	21.52	748	462	0.83	33059	59.31
699	373	0.67	12370	22.19	749	453	0.81	33512	60.13

Table F.7. Scale Score Distribution—ELA Grade 3

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	% 0.29 0.31 0.28 0.30 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.27 0.28 0.18 0.21 0.26 0.15 0.19 0.13 0.20 0.16 0.11	Cum. Freq. 51772 51943 52099 52266 52413 52558 52689 52836 52977 53098 53254 53357 53473 53620 53703 53809 53882 53993 54084 54143	Cum. % 92.89 93.19 93.47 93.77 94.04 94.30 94.53 94.80 95.05 95.27 95.55 95.73 95.73 95.94 96.20 96.35 96.54 96.67 96.87 97.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.31 \\ 0.28 \\ 0.30 \\ 0.26 \\ 0.26 \\ 0.24 \\ 0.26 \\ 0.25 \\ 0.22 \\ 0.28 \\ 0.18 \\ 0.21 \\ 0.26 \\ 0.15 \\ 0.19 \\ 0.13 \\ 0.20 \\ 0.16 \\ 0.11 \end{array}$	51943 52099 52266 52413 52558 52689 52836 52977 53098 53254 53357 53473 53620 53703 53809 53882 53993 54084	93.19 93.47 93.77 94.04 94.30 94.53 94.80 95.05 95.27 95.55 95.73 95.73 95.94 96.20 96.35 96.54 96.67 96.87
752 432 0.78 34884 62.59 803 156 753 458 0.82 35342 63.41 804 167 754 461 0.83 35803 64.24 805 147 755 466 0.84 36269 65.07 806 145 756 449 0.81 36718 65.88 807 131 757 420 0.75 37138 66.63 808 147 758 445 0.80 37583 67.43 809 141 759 450 0.81 38033 68.24 810 121 760 402 0.72 38435 68.96 811 156 761 418 0.75 38853 69.71 812 103 762 457 0.82 39310 70.53 813 116 763 431 0.77 39741 71.30 814 147 764 412 0.74 40153 72.04 815 83 765 400 0.72 40957 73.48 817 73 767 424 0.76 41381 74.24 818 111 768 378 0.68 41759 74.92 819 91 769 394 0.71 42153 75.63 820 59 770 396 0.71 42549 76.34 821 120 771 36	$\begin{array}{c} 0.28\\ 0.30\\ 0.26\\ 0.26\\ 0.24\\ 0.26\\ 0.25\\ 0.22\\ 0.28\\ 0.18\\ 0.21\\ 0.26\\ 0.15\\ 0.19\\ 0.13\\ 0.20\\ 0.16\\ 0.11\\ \end{array}$	52099 52266 52413 52558 52689 52836 52977 53098 53254 53357 53473 53620 53703 53620 53703 53809 53882 53993 54084	93.47 93.77 94.04 94.30 94.53 94.80 95.05 95.27 95.55 95.73 95.94 96.20 96.35 96.54 96.67 96.87
753 458 0.82 35342 63.41 804 167 754 461 0.83 35803 64.24 805 147 755 466 0.84 36269 65.07 806 145 756 449 0.81 36718 65.88 807 131 757 420 0.75 37138 66.63 808 147 758 445 0.80 37583 67.43 809 141 759 450 0.81 38033 68.24 810 121 760 402 0.72 38435 68.96 811 156 761 418 0.75 38853 69.71 812 103 762 457 0.82 39310 70.53 813 116 763 431 0.77 39741 71.30 814 147 764 412 0.74 40153 72.04 815 83 765 400 0.72 40957 73.48 817 73 767 424 0.76 41381 74.24 818 111 768 378 0.68 41759 74.92 819 91 769 394 0.71 42549 76.34 821 120 771 367 0.66 42916 77.00 822 71 772 393 0.71 43309 77.70 823 73	$\begin{array}{c} 0.30\\ 0.26\\ 0.26\\ 0.24\\ 0.26\\ 0.25\\ 0.22\\ 0.28\\ 0.18\\ 0.21\\ 0.26\\ 0.15\\ 0.19\\ 0.13\\ 0.20\\ 0.16\\ 0.11\\ \end{array}$	52266 52413 52558 52689 52836 52977 53098 53254 53357 53473 53620 53703 53809 53882 53899 53882 53993 54084	93.77 94.04 94.30 94.53 94.80 95.05 95.27 95.55 95.73 95.94 96.20 96.35 96.54 96.54 96.67 96.87
754 461 0.83 35803 64.24 805 147 755 466 0.84 36269 65.07 806 145 756 449 0.81 36718 65.88 807 131 757 420 0.75 37138 66.63 808 147 758 445 0.80 37583 67.43 809 141 759 450 0.81 38033 68.24 810 121 760 402 0.72 38435 68.96 811 156 761 418 0.75 38853 69.71 812 103 762 457 0.82 39310 70.53 813 116 763 431 0.77 39741 71.30 814 147 764 412 0.74 40153 72.04 815 83 765 400 0.72 40957 73.48 817 73 767 424 0.76 41381 74.24 818 111 768 378 0.68 41759 74.92 819 91 769 394 0.71 42549 76.34 821 120 771 367 0.66 42916 77.00 822 71 772 393 0.71 43309 77.70 823 73	$\begin{array}{c} 0.26\\ 0.24\\ 0.26\\ 0.25\\ 0.22\\ 0.28\\ 0.18\\ 0.21\\ 0.26\\ 0.15\\ 0.19\\ 0.13\\ 0.20\\ 0.16\\ 0.11\\ \end{array}$	52413 52558 52689 52836 52977 53098 53254 53357 53473 53620 53703 53809 53882 53899 53882 53993 54084	94.04 94.30 94.53 95.05 95.27 95.55 95.73 95.94 96.20 96.35 96.54 96.67 96.87
755 466 0.84 36269 65.07 806 145 756 449 0.81 36718 65.88 807 131 757 420 0.75 37138 66.63 808 147 758 445 0.80 37583 67.43 809 141 759 450 0.81 38033 68.24 810 121 760 402 0.72 38435 68.96 811 156 761 418 0.75 38853 69.71 812 103 762 457 0.82 39310 70.53 813 116 763 431 0.77 39741 71.30 814 147 764 412 0.74 40153 72.04 815 83 765 400 0.72 40957 73.48 817 73 767 424 0.76 41381 74.24 818 111 768 378 0.68 41759 74.92 819 91 769 394 0.71 42153 75.63 820 59 770 396 0.71 42249 76.34 821 120 771 367 0.66 42916 77.00 822 71 772 393 0.71 43309 77.70 823 73	$\begin{array}{c} 0.26\\ 0.24\\ 0.26\\ 0.25\\ 0.22\\ 0.28\\ 0.18\\ 0.21\\ 0.26\\ 0.15\\ 0.19\\ 0.13\\ 0.20\\ 0.16\\ 0.11\\ \end{array}$	52558 52689 52836 52977 53098 53254 53357 53473 53620 53703 53809 53882 53993 54084	94.30 94.53 94.80 95.05 95.27 95.55 95.73 95.94 96.20 96.35 96.54 96.67 96.87
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.24\\ 0.26\\ 0.25\\ 0.22\\ 0.28\\ 0.18\\ 0.21\\ 0.26\\ 0.15\\ 0.19\\ 0.13\\ 0.20\\ 0.16\\ 0.11\\ \end{array}$	52689 52836 52977 53098 53254 53357 53473 53620 53703 53809 53882 53993 54084	94.53 94.80 95.05 95.27 95.55 95.73 95.94 96.20 96.35 96.54 96.54 96.67 96.87
757 420 0.75 37138 66.63 808 147 758 445 0.80 37583 67.43 809 141 759 450 0.81 38033 68.24 810 121 760 402 0.72 38435 68.96 811 156 761 418 0.75 38853 69.71 812 103 762 457 0.82 39310 70.53 813 116 763 431 0.77 39741 71.30 814 147 764 412 0.74 40153 72.04 815 83 765 400 0.72 40957 73.48 817 73 767 424 0.76 41381 74.24 818 111 768 378 0.68 41759 74.92 819 91 769 394 0.71 42153 75.63 820 59 770 396 0.71 42549 76.34 821 120 771 367 0.66 42916 77.00 822 71 772 393 0.71 43309 77.70 823 73	$\begin{array}{c} 0.26\\ 0.25\\ 0.22\\ 0.28\\ 0.18\\ 0.21\\ 0.26\\ 0.15\\ 0.19\\ 0.13\\ 0.20\\ 0.16\\ 0.11\\ \end{array}$	52836 52977 53098 53254 53357 53473 53620 53703 53809 53882 53993 54084	94.80 95.05 95.27 95.55 95.73 95.94 96.20 96.35 96.54 96.67 96.87
758 445 0.80 37583 67.43 809 141 759 450 0.81 38033 68.24 810 121 760 402 0.72 38435 68.96 811 156 761 418 0.75 38853 69.71 812 103 762 457 0.82 39310 70.53 813 116 763 431 0.77 39741 71.30 814 147 764 412 0.74 40153 72.04 815 83 765 400 0.72 40553 72.76 816 106 766 404 0.72 40957 73.48 817 73 767 424 0.76 41381 74.24 818 111 768 378 0.68 41759 74.92 819 91 769 394 0.71 42153 75.63 820 59 770 396 0.71 42549 76.34 821 120 771 367 0.66 42916 77.00 822 71 772 393 0.71 43309 77.70 823 73	$\begin{array}{c} 0.25\\ 0.22\\ 0.28\\ 0.18\\ 0.21\\ 0.26\\ 0.15\\ 0.19\\ 0.13\\ 0.20\\ 0.16\\ 0.11\\ \end{array}$	52977 53098 53254 53357 53473 53620 53703 53809 53882 53893 54084	95.05 95.27 95.55 95.73 95.94 96.20 96.35 96.54 96.54 96.67 96.87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.22 0.28 0.18 0.21 0.26 0.15 0.19 0.13 0.20 0.16 0.11	53098 53254 53357 53473 53620 53703 53809 53882 53893 54084	95.27 95.55 95.73 95.94 96.20 96.35 96.54 96.54 96.67 96.87
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.28 0.18 0.21 0.26 0.15 0.19 0.13 0.20 0.16 0.11	53254 53357 53473 53620 53703 53809 53882 53993 54084	95.55 95.73 95.94 96.20 96.35 96.54 96.67 96.87
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.18 0.21 0.26 0.15 0.19 0.13 0.20 0.16 0.11	53357 53473 53620 53703 53809 53882 53993 54084	95.73 95.94 96.20 96.35 96.54 96.67 96.87
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.21 0.26 0.15 0.19 0.13 0.20 0.16 0.11	53473 53620 53703 53809 53882 53993 54084	95.94 96.20 96.35 96.54 96.67 96.87
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.26 0.15 0.19 0.13 0.20 0.16 0.11	53620 53703 53809 53882 53993 54084	96.20 96.35 96.54 96.67 96.87
7644120.744015372.04815837654000.724055372.768161067664040.724095773.48817737674240.764138174.248181117683780.684175974.92819917693940.714215375.63820597703960.714254976.348211207713670.664291677.00822717723930.714330977.7082373	$\begin{array}{c} 0.15 \\ 0.19 \\ 0.13 \\ 0.20 \\ 0.16 \\ 0.11 \end{array}$	53703 53809 53882 53993 54084	96.35 96.54 96.67 96.87
7654000.724055372.768161067664040.724095773.48817737674240.764138174.248181117683780.684175974.92819917693940.714215375.63820597703960.714254976.348211207713670.664291677.00822717723930.714330977.7082373	0.19 0.13 0.20 0.16 0.11	53809 53882 53993 54084	96.54 96.67 96.87
7664040.724095773.48817737674240.764138174.248181117683780.684175974.92819917693940.714215375.63820597703960.714254976.348211207713670.664291677.00822717723930.714330977.7082373	0.13 0.20 0.16 0.11	53882 53993 54084	96.67 96.87
7674240.764138174.248181117683780.684175974.92819917693940.714215375.63820597703960.714254976.348211207713670.664291677.00822717723930.714330977.7082373	0.20 0.16 0.11	53993 54084	96.87
7683780.684175974.92819917693940.714215375.63820597703960.714254976.348211207713670.664291677.00822717723930.714330977.7082373	0.16 0.11	54084	
7693940.714215375.63820597703960.714254976.348211207713670.664291677.00822717723930.714330977.7082373	0.11		07.02
7703960.714254976.348211207713670.664291677.00822717723930.714330977.7082373		54143	97.03
7713670.664291677.00822717723930.714330977.7082373	0.22		97.14
772 393 0.71 43309 77.70 823 73		54263	97.36
	0.13	54334	97.48
	0.13	54407	97.61
773 410 0.74 43719 78.44 824 78	0.14	54485	97.75
774 421 0.76 44140 79.19 825 65	0.12	54550	97.87
775 362 0.65 44502 79.84 826 57	0.10	54607	97.97
776 356 0.64 44858 80.48 827 54	0.10	54661	98.07
777 374 0.67 45232 81.15 828 41	0.07	54702	98.14
778 309 0.55 45541 81.71 829 60	0.11	54762	98.25
779 329 0.59 45870 82.30 830 42	0.08	54804	98.33
780 364 0.65 46234 82.95 831 41	0.07	54845	98.40
781 337 0.60 46571 83.55 832 64	0.11	54909	98.51
782 320 0.57 46891 84.13 833 56	0.10	54965	98.61
783 329 0.59 47220 84.72 834 33	0.06	54998	98.67
784 303 0.54 47523 85.26 835 51	0.09	55049	98.77
785 306 0.55 47829 85.81 836 36	0.06	55085	98.83
786 275 0.49 48104 86.31 837 23	0.04	55108	98.87
787 286 0.51 48390 86.82 838 17	0.03	55125	98.90
788 278 0.50 48668 87.32 839 36	0.06	55161	98.97
789 301 0.54 48969 87.86 840 27	0.05	55188	99.02
790 272 0.49 49241 88.35 841 39	0.07	55227	99.08
791 254 0.46 49495 88.80 842 35	0.06	55262	99.15
792 268 0.48 49763 89.28 843 18	0.03	55280	99.18
793 286 0.51 50049 89.79 844 23	0.04	55303	99.22
794 256 0.46 50305 90.25 845 31	0.06	55334	99.28
795 220 0.39 50525 90.65 846 34	0.06	55368	99.34
796 246 0.44 50771 91.09 847 14	0.03	55382	99.36
797 206 0.37 50977 91.46 848 21	0.04	55403	99.40
798 238 0.43 51215 91.89 849 12	0.02	55415	99.42
799 191 0.34 51406 92.23 850 322	0.58	55737	100.00
800 204 0.37 51610 92.60			

Table	r.o. Sca	le Score	Distribution	-ELA Graue 4	•				
SS	Freq.	%	Cum. Freq.	Cum. %	SS	Freq.	%	Cum. Freq.	Cum. %
650	455	0.82	455	0.82	700	260	0.47	8323	14.99
651	34	0.06	489	0.88	701	278	0.50	8601	15.49
652	39	0.07	528	0.95	702	275	0.50	8876	15.99
653	25	0.05	553	1.00	703	322	0.58	9198	16.57
654	26	0.05	579	1.04	704	277	0.50	9475	17.07
655	30	0.05	609	1.10	705	304	0.55	9779	17.61
656	46	0.08	655	1.18	706	363	0.65	10142	18.27
657	62	0.11	717	1.29	707	318	0.57	10460	18.84
658	57	0.10	774	1.39	708	328	0.59	10788	19.43
659	58	0.10	832	1.50	709	362	0.65	11150	20.08
660	64	0.12	896	1.61	710	382	0.69	11532	20.77
661	68	0.12	964	1.74	711	358	0.64	11890	21.42
662	72	0.13	1036	1.87	712	355	0.64	12245	22.06
663	69	0.12	1105	1.99	713	368	0.66	12613	22.72
664	77	0.14	1182	2.13	714	362	0.65	12975	23.37
665	75	0.14	1257	2.26	715	380	0.68	13355	24.05
666	85	0.15	1342	2.42	716	384	0.69	13739	24.75
667	118	0.21	1460	2.63	717	385	0.69	14124	25.44
668	108	0.19	1568	2.82	718	397	0.72	14521	26.16
669	105	0.19	1673	3.01	719	440	0.79	14961	26.95
670	115	0.21	1788	3.22	720	421	0.76	15382	27.71
671	135	0.24	1923	3.46	721	465	0.84	15847	28.54
672	125	0.23	2048	3.69	722	454	0.82	16301	29.36
673	151	0.27	2199	3.96	723	432	0.78	16733	30.14
674	131	0.24	2330	4.20	724	476	0.86	17209	31.00
675	159	0.29	2489	4.48	725	459	0.83	17668	31.82
676	157	0.28	2646	4.77	726	476	0.86	18144	32.68
677	157	0.28	2803	5.05	727	474	0.85	18618	33.53
678	183	0.33	2986	5.38	728	504	0.91	19122	34.44
679	168	0.30	3154	5.68	729	494	0.89	19616	35.33
680	223	0.40	3377	6.08	730	531	0.96	20147	36.29
681	217	0.39	3594	6.47	731	549	0.99	20696	37.28
682	185	0.33	3779	6.81	732	540	0.97	21236	38.25
683	213	0.38	3992	7.19	733	538	0.97	21774	39.22
684	206	0.37	4198	7.56	734	572	1.03	22346	40.25
685	255	0.46	4453	8.02	735	520	0.94	22866	41.19
686	219	0.39	4672	8.42	736	536	0.97	23402	42.15
687	241	0.43	4913	8.85	737	558	1.01	23960	43.16
688	244	0.44	5157	9.29	738	569	1.02	24529	44.18
689	210	0.38	5367	9.67	739	575	1.04	25104	45.22
690	260	0.47	5627	10.14	740	598	1.08	25702	46.29
691	253	0.46	5880	10.59	741	621	1.12	26323	47.41
692	255	0.46	6135	11.05	742	569	1.02	26892	48.44
693	239	0.43	6374	11.48	743	604	1.09	27496	49.53
694	265	0.48	6639	11.96	744	625	1.13	28121	50.65
695	285	0.51	6924	12.47	745	587	1.06	28708	51.71
696	314	0.57	7238	13.04	746	630	1.13	29338	52.84
697	282	0.51	7520	13.54	747	615	1.11	29953	53.95
698	273	0.49	7793	14.04	748	619	1.11	30572	55.07
699	270	0.49	8063	14.52	749	641	1.15	31213	56.22
	/ 0								

Table F.8. Scale Score Distribution—ELA Grade 4

~~~	-		~ -	~		_		~ ~	~
SS	Freq.	%	Cum. Freq.	Cum. %	SS	Freq		Cum. Freq.	Cum. %
750	541	0.97	31754	57.19	801			53140	95.71
751	615	1.11	32369	58.30	802			53279	95.97
752	635	1.14	33004	59.45	803			53428	96.23
753	647	1.17	33651	60.61	804			53561	96.47
754	585	1.05	34236	61.67	805			53683	96.69
755	614	1.11	34850	62.77	806			53801	96.91
756	575	1.04	35425	63.81	807			53911	97.10
757	597	1.08	36022	64.88	808			54025	97.31
758	631	1.14	36653	66.02	809	94	0.17	54119	97.48
759	609	1.10	37262	67.12	810	96	0.17	54215	97.65
760	562	1.01	37824	68.13	811	82	0.15	54297	97.80
761	619	1.11	38443	69.24	812	87	0.16	54384	97.96
762	568	1.02	39011	70.27	813	64	0.12	54448	98.07
763	573	1.03	39584	71.30	814	71	0.13	54519	98.20
764	511	0.92	40095	72.22	815	85	0.15	54604	98.35
765	555	1.00	40650	73.22	816	5 47	0.08	54651	98.44
766	509	0.92	41159	74.13	817	56	0.10	54707	98.54
767	541	0.97	41700	75.11	818	65	0.12	54772	98.65
768	499	0.90	42199	76.01	819	40	0.07	54812	98.73
769	586	1.06	42785	77.06	820	35	0.06	54847	98.79
770	516	0.93	43301	77.99	821		0.08	54890	98.87
771	504	0.91	43805	78.90	822	. 37	0.07	54927	98.93
772	497	0.90	44302	79.80	823		0.07	54964	99.00
773	509	0.92	44811	80.71	824		0.07	55001	99.07
774	428	0.77	45239	81.48	825		0.07	55038	99.13
775	425	0.77	45664	82.25	826		0.06	55069	99.19
776	478	0.86	46142	83.11	827		0.06	55104	99.25
777	451	0.81	46593	83.92	828		0.05	55130	99.30
778	387	0.70	46980	84.62	829		0.03	55147	99.33
779	412	0.74	47392	85.36	830		0.06	55182	99.39
780	389	0.70	47781	86.06	831		0.05	55207	99.44
781	354	0.64	48135	86.70	832		0.05	55234	99.49
782	369	0.66	48504	87.36	833		0.03	55253	99.52
783	331	0.60	48835	87.96	834		0.04	55275	99.56
784	331	0.60	49166	88.56	835		0.03	55290	99.59
785	315	0.57	49481	89.12	836		0.04	55311	99.63
786	318	0.57	49799	89.70	837		0.03	55327	99.65
787	284	0.51	50083	90.21	838		0.03	55342	99.68
788	300	0.54	50383	90.75	839		0.03	55357	99.71
789	292	0.53	50675	91.28	840		0.02	55369	99.73
790	273	0.49	50948	91.77	841		0.01	55376	99.74
791	286	0.52	51234	92.28	842		0.01	55383	99.76
792	242	0.44	51476	92.72	843		0.01	55391	99.77
793	248	0.45	51724	93.16	844		0.01	55399	99.78
794	229	0.41	51953	93.58	845		0.03	55416	99.81
795	211	0.38	52164	93.96	846		0.01	55423	99.83
796	181	0.33	52345	94.28	847		0.01	55429	99.84
797	179	0.33	52524	94.61	848		0.01	55436	99.85
798	152	0.32	52676	94.88	849		0.01	55441	99.86
799	175	0.32	52851	95.19	85(		0.01	55519	100.00
800	150	0.32	53001	95.46	0.50	70	0.17	55517	100.00

Table	r.). 5ta		Distribution	-ELA OTaut	5				
SS	Freq.	%	Cum. Freq.	Cum. %	SS	Freq.	%	Cum. Freq.	Cum. %
650	84	0.15	84	0.15	700	300	0.53	4794	8.46
651	7	0.01	91	0.16	701	338	0.60	5132	9.06
652	3	0.01	94	0.17	702	334	0.59	5466	9.65
653	11	0.02	105	0.19	703	336	0.59	5802	10.24
654	4	0.01	109	0.19	704	361	0.64	6163	10.88
655	1	0.00	110	0.19	705	351	0.62	6514	11.50
656	7	0.01	117	0.21	706	399	0.70	6913	12.20
657	14	0.02	131	0.23	707	375	0.66	7288	12.86
658	11	0.02	142	0.25	708	406	0.72	7694	13.58
659	10	0.02	152	0.27	709	372	0.66	8066	14.24
660	14	0.02	166	0.29	710	393	0.69	8459	14.93
661	13	0.02	179	0.32	711	428	0.76	8887	15.69
662	12	0.02	191	0.34	712	406	0.72	9293	16.40
663	17	0.03	208	0.37	713	419	0.74	9712	17.14
664	19	0.03	227	0.40	714	419	0.74	10131	17.88
665	23	0.04	250	0.44	715	438	0.77	10569	18.65
666	20	0.04	270	0.48	716	470	0.83	11039	19.48
667	26	0.05	296	0.52	717	482	0.85	11521	20.33
668	26	0.05	322	0.52	718	470	0.83	11991	21.16
669	26	0.05	348	0.61	719	472	0.83	12463	22.00
670	32	0.05	380	0.67	720	530	0.94	12993	22.93
671	50	0.09	430	0.76	720	478	0.84	13471	23.78
672	36	0.05	466	0.82	721	484	0.85	13955	24.63
673	45	0.08	511	0.90	723	475	0.84	14430	25.47
674	54	0.10	565	1.00	723	550	0.97	14980	26.44
675	45	0.08	610	1.08	725	502	0.89	15482	27.33
676	64	0.00	674	1.19	725	517	0.91	15999	28.24
677	77	0.11	751	1.33	720	556	0.91	16555	29.22
678	81	0.14	832	1.47	728	503	0.89	17058	30.11
679	91	0.14	923	1.63	729	535	0.94	17593	31.05
680	67	0.10	990	1.75	730	548	0.97	18141	32.02
681	83	0.12	1073	1.89	731	560	0.99	18701	33.01
682	115	0.10	1188	2.10	732	608	1.07	19309	34.08
683	99	0.20	1287	2.10	732	559	0.99	19868	35.07
684	112	0.20	1399	2.47	733	593	1.05	20461	36.11
685	124	0.20	1523	2.69	735	581	1.03	21042	37.14
686	118	0.22	1641	2.90	736	569	1.00	21642	38.14
687	167	0.21	1808	3.19	737	640	1.13	22251	39.27
688	149	0.25	1957	3.45	738	629	1.11	22880	40.38
689	160	0.28	2117	3.74	739	582	1.03	23462	41.41
690	193	0.28	2310	4.08	737	604	1.05	24066	42.48
691	173	0.34	2484	4.38	740	632	1.12	24698	43.59
692	184	0.31	2668	4.71	741	608	1.07	25306	44.67
693	227	0.32	2895	5.11	742	615	1.07	25921	45.75
693 694	255	0.40	3150	5.56	743	622	1.10	26543	46.85
694 695	255 267	0.43	3417	6.03	744	622	1.10	20343	40.83 47.95
695 696	207	0.47	3696	6.52	743	620	1.10	27103	47.93
690 697	249	0.49	3090 3945	6.96	740	646	1.14	28431	49.04 50.18
697 698	249 262	0.44 0.46	3945 4207	6.96 7.43	747	580	1.14	28431 29011	51.20
698 699	287		4207 4494	7.93	748	588	1.02	29011	52.24
099	207	0.51	4494	1.73	/49	200	1.04	27377	JZ.24

Table F.9. Scale Score Distribution—ELA Grade 5

			1		-		r		1	
SS	Freq.	%	Cum. Freq.	Cum. %	-	SS	Freq.	%	Cum. Freq.	Cum. %
750	644	1.14	30243	53.38		801	209	0.37	53534	94.49
751	630	1.11	30873	54.49		802	219	0.39	53753	94.87
752	600	1.06	31473	55.55		803	198	0.35	53951	95.22
753	652	1.15	32125	56.70		804	163	0.29	54114	95.51
754	654	1.15	32779	57.86		805	150	0.26	54264	95.78
755	606	1.07	33385	58.92		806	150	0.26	54414	96.04
756	610	1.08	33995	60.00		807	158	0.28	54572	96.32
757	631	1.11	34626	61.12		808	143	0.25	54715	96.57
758	589	1.04	35215	62.15		809	123	0.22	54838	96.79
759	605	1.07	35820	63.22		810	121	0.21	54959	97.00
760	595	1.05	36415	64.27		811	117	0.21	55076	97.21
761	594	1.05	37009	65.32		812	122	0.22	55198	97.42
762	555	0.98	37564	66.30		813	100	0.18	55298	97.60
763	600	1.06	38164	67.36		814	87	0.15	55385	97.75
764	561	0.99	38725	68.35		815	105	0.19	55490	97.94
765	610	1.08	39335	69.43		816	99	0.17	55589	98.11
766	588	1.04	39923	70.46		817	68	0.12	55657	98.23
767	547	0.97	40470	71.43		818	81	0.14	55738	98.38
768	570	1.01	41040	72.44		819	68	0.12	55806	98.50
769	544	0.96	41584	73.40		820	69	0.12	55875	98.62
770	534	0.94	42118	74.34		821	74	0.13	55949	98.75
771	547	0.97	42665	75.30		822	52	0.09	56001	98.84
772	488	0.86	43153	76.17		823	57	0.10	56058	98.94
773	506	0.89	43659	77.06		824	25	0.04	56083	98.99
774	510	0.90	44169	77.96		825	49	0.09	56132	99.07
775	488	0.86	44657	78.82		826	39	0.07	56171	99.14
776	466	0.82	45123	79.64		827	43	0.08	56214	99.22
777	480	0.85	45603	80.49		828	45	0.08	56259	99.30
778	411	0.73	46014	81.22		829	33	0.06	56292	99.36
779	431	0.76	46445	81.98		830	37	0.07	56329	99.42
780	444	0.78	46889	82.76		831	41	0.07	56370	99.49
781	454	0.80	47343	83.56		832	23	0.04	56393	99.53
782	442	0.78	47785	84.34		833	14	0.02	56407	99.56
783	416	0.73	48201	85.08		834	13	0.02	56420	99.58
784	425	0.75	48626	85.83		835	19	0.03	56439	99.62
785	393	0.69	49019	86.52		836	12	0.02	56451	99.64
786	353	0.62	49372	87.14		837	14	0.02	56465	99.66
787	344	0.61	49716	87.75		838	20	0.04	56485	99.70
788	332	0.59	50048	88.34		839	16	0.03	56501	99.72
789	333	0.59	50381	88.92		840	15	0.03	56516	99.75
790	331	0.58	50712	89.51		841	8	0.01	56524	99.77
791	298	0.53	51010	90.03		842	12	0.02	56536	99.79
792	291	0.51	51301	90.55		843	12	0.02	56548	99.81
793	293	0.52	51594	91.06		844	13	0.02	56561	99.83
794	277	0.49	51871	91.55		845	7	0.01	56568	99.84
795	290	0.51	52161	92.06		846	13	0.02	56581	99.87
796	250	0.44	52411	92.51		847	8	0.01	56589	99.88
797	224	0.40	52635	92.90		848	4	0.01	56593	99.89
798	253	0.45	52888	93.35		849	7	0.01	56600	99.90
799	236	0.42	53124	93.76		850	57	0.10	56657	100.00
800	201	0.35	53325	94.12				-		
800	201	0.35	53325	94.12						

$            \begin{array}{c cccccccccccccccccccccccc$	00 01 02 03 04	Freq. 364 376 371	% 0.65 0.68	Cum. Freq. 6098 6474	Cum. % 10.97
651         7         0.01         102         0.18         70           652         15         0.03         117         0.21         70           653         4         0.01         121         0.22         70           654         10         0.02         131         0.24         70           655         13         0.02         144         0.26         70           655         10         0.02         154         0.28         70           657         12         0.02         166         0.30         70           658         13         0.02         179         0.32         70	01 02 03 04	376 371	0.68		
652         15         0.03         117         0.21         70           653         4         0.01         121         0.22         70           654         10         0.02         131         0.24         70           655         13         0.02         144         0.26         70           656         10         0.02         154         0.28         70           657         12         0.02         166         0.30         70           658         13         0.02         179         0.32         70	02 03 04	371		6474	
653         4         0.01         121         0.22         70           654         10         0.02         131         0.24         70           655         13         0.02         144         0.26         70           655         10         0.02         154         0.28         70           657         12         0.02         166         0.30         70           658         13         0.02         179         0.32         70	03 04		0.77	0474	11.64
654         10         0.02         131         0.24         70           655         13         0.02         144         0.26         70           656         10         0.02         154         0.28         70           657         12         0.02         166         0.30         70           658         13         0.02         179         0.32         70	04	200	0.67	6845	12.31
654         10         0.02         131         0.24         70           655         13         0.02         144         0.26         70           656         10         0.02         154         0.28         70           657         12         0.02         166         0.30         70           658         13         0.02         179         0.32         70		399	0.72	7244	13.03
655         13         0.02         144         0.26         70           656         10         0.02         154         0.28         70           657         12         0.02         166         0.30         70           658         13         0.02         179         0.32         70	05	394	0.71	7638	13.74
656         10         0.02         154         0.28         70           657         12         0.02         166         0.30         70           658         13         0.02         179         0.32         70	05	411	0.74	8049	14.48
657         12         0.02         166         0.30         70           658         13         0.02         179         0.32         70	06	433	0.78	8482	15.25
658         13         0.02         179         0.32         70	07	449	0.81	8931	16.06
	08	453	0.81	9384	16.88
659 17 0.03 196 0.35 70	09	445	0.80	9829	17.68
	10	432	0.78	10261	18.45
	11	424	0.76	10685	19.22
	12	428	0.77	11113	19.99
	13	449	0.81	11562	20.79
	14	478	0.86	12040	21.65
	15	444	0.80	12484	22.45
	16	430	0.77	12914	23.23
	17	494	0.89	13408	24.11
	18	497	0.89	13905	25.01
	19	515	0.09	14420	25.93
	20	494	0.89	14914	26.82
	21	510	0.82	15424	20.82
	22	504	0.92	15928	28.65
	23	498	0.91	16426	28.05 29.54
	23	498 517	0.90	16943	29.34 30.47
	24	540	0.93	10943	31.44
	26	550	0.97	18033	32.43
	20	518	0.99	18033	32.43 33.36
	27		0.95 1.01	18551	33.30 34.37
		560			
	29	534	0.96	19645	35.33
	30	527	0.95	20172	36.28
	31	568	1.02	20740	37.30
	32	553	0.99	21293	38.30
	33	541	0.97	21834	39.27
	34	596	1.07	22430	40.34
	35	584	1.05	23014	41.39
	36	607	1.09	23621	42.48
	37	593	1.07	24214	43.55
	38	599	1.08	24813	44.63
	39	568	1.02	25381	45.65
	40	627	1.13	26008	46.78
	41	596	1.07	26604	47.85
	42	575	1.03	27179	48.88
	43	608	1.09	27787	49.97
	44	621	1.12	28408	51.09
	45	618	1.11	29026	52.20
696         309         0.56         4752         8.55         74	46	609	1.10	29635	53.30
697         311         0.56         5063         9.11         74	47	623	1.12	30258	54.42
698         311         0.56         5374         9.67         74	48	612	1.10	30870	55.52
699         360         0.65         5734         10.31         74	49	617	1.11	31487	56.63

Table F.10. Scale Score Distribution—ELA Grade 6

SS	Erag	%	Cum. Freq.	Cum. %		SS	Erec	%	Cum Eng	Cum 0/
-	Freq.		-				Freq.		Cum. Freq.	Cum. %
750	619	1.11	32106	57.74		801	129	0.23	53767	96.70
751	602	1.08	32708	58.83		802	118	0.21	53885	96.91
752	593	1.07	33301	59.89		803	122	0.22	54007	97.13
753	598	1.08	33899	60.97		804	118	0.21	54125	97.34
754	665	1.20	34564	62.16		805	112	0.20	54237	97.55
755	576	1.04	35140	63.20		806	107	0.19	54344	97.74
756	619	1.11	35759	64.31		807	109	0.20	54453	97.93
757	605	1.09	36364	65.40		808	88	0.16	54541	98.09
758	578	1.04	36942	66.44		809	86	0.15	54627	98.25
759	606	1.09	37548	67.53		810	70	0.13	54697	98.37
760	588	1.06	38136	68.59		811	77	0.14	54774	98.51
761	631	1.13	38767	69.72		812	60	0.11	54834	98.62
762	629	1.13	39396	70.85		813	51	0.09	54885	98.71
763	567	1.02	39963	71.87		814	53	0.10	54938	98.81
764	586	1.05	40549	72.93		815	56	0.10	54994	98.91
765	602	1.08	41151	74.01		816	50	0.09	55044	99.00
766	567	1.02	41718	75.03		817	46	0.08	55090	99.08
767	578	1.04	42296	76.07		818	34	0.06	55124	99.14
768	517	0.93	42813	77.00		819	41	0.07	55165	99.21
769	551	0.99	43364	77.99		820	28	0.05	55193	99.26
770	519	0.93	43883	78.92		821	47	0.08	55240	99.35
771	488	0.88	44371	79.80		822	27	0.05	55267	99.40
772	522	0.94	44893	80.74		823	28	0.05	55295	99.45
773	460	0.83	45353	81.57		824	31	0.06	55326	99.50
774	423	0.76	45776	82.33		825	18	0.03	55344	99.54
775	465	0.84	46241	83.16		826	28	0.05	55372	99.59
776	485	0.87	46726	84.04		827	15	0.03	55387	99.61
777	416	0.75	47142	84.78		828	13	0.03	55404	99.64
778	440	0.79	47582	85.58		829	15	0.03	55419	99.67
779	422	0.76	48004	86.34		830	9	0.03	55428	99.69
780	372	0.70	48376	87.00		831	12	0.02	55440	99.71
781	395	0.07	48771	87.71		832	12	0.02	55452	99.71 99.73
782	393	0.71	49142	88.38		832	12	0.02	55469	99.75 99.76
782	399	0.07	49142	88.38 89.10		833 834	17	0.03	55481	99.70 99.78
783 784	335					835			55496	
784 785		$\begin{array}{c} 0.60\\ 0.60\end{array}$	49876 50209	89.70 90.30			15	0.03 0.01		99.81
	333	0.60		90.30 90.84		836 837	8	0.01	55504 55512	99.82
786	301		50510				8		55512	99.84
787	307	0.55	50817	91.39		838	10	0.02	55522	99.86
788	288	0.52	51105	91.91		839	6	0.01	55528	99.87
789 700	258	0.46	51363	92.38		840	5	0.01	55533	99.88
790 701	278	0.50	51641	92.88		841	8	0.01	55541	99.89
791	291	0.52	51932	93.40		842	7	0.01	55548	99.90
792	213	0.38	52145	93.78		843	4	0.01	55552	99.91
793	216	0.39	52361	94.17		844	5	0.01	55557	99.92
794	216	0.39	52577	94.56		845	7	0.01	55564	99.93
795	192	0.35	52769	94.90		847	1	0.00	55565	99.93
796	183	0.33	52952	95.23		848	5	0.01	55570	99.94
797	174	0.31	53126	95.55		849	3	0.01	55573	99.95
798	175	0.31	53301	95.86	-	850	29	0.05	55602	100.00
799	171	0.31	53472	96.17						
800	166	0.30	53638	96.47						

Table I	r.11. Sta	ale Scol	e Distributio	on—ELA Grade 7					
SS	Freq.	%	Cum. Freq.	Cum. %	SS	Freq.	%	Cum. Freq.	Cum. %
650	343	0.64	343	0.64	700	293	0.54	7422	13.77
651	30	0.06	373	0.69	701	353	0.65	7775	14.43
652	19	0.04	392	0.73	702	317	0.59	8092	15.01
653	26	0.05	418	0.78	703	327	0.61	8419	15.62
654	29	0.05	447	0.83	704	316	0.59	8735	16.21
655	32	0.06	479	0.89	705	329	0.61	9064	16.82
656	33	0.06	512	0.95	706	347	0.64	9411	17.46
657	30	0.06	542	1.01	707	338	0.63	9749	18.09
658	32	0.06	574	1.07	708	349	0.65	10098	18.74
659	43	0.08	617	1.14	709	382	0.71	10480	19.45
660	41	0.08	658	1.22	710	341	0.63	10821	20.08
661	50	0.09	708	1.31	711	383	0.71	11204	20.79
662	51	0.09	759	1.41	712	394	0.73	11598	21.52
663	54	0.10	813	1.51	713	380	0.71	11978	22.22
664	40	0.07	853	1.58	714	400	0.74	12378	22.97
665	60	0.11	913	1.69	715	402	0.75	12780	23.71
666	80	0.11	993	1.84	716	392	0.73	13172	24.44
667	61	0.15	1054	1.96	717	396	0.73	13568	25.17
668	63	0.11	1117	2.07	718	435	0.81	14003	25.98
669	64	0.12	1181	2.19	719	414	0.77	14003	26.75
670	04 94	0.12	1275	2.19	720	420	0.78	14837	27.53
670 671	94 90	0.17	1365	2.53	720	420	0.78	15265	27.33
672	90 124	0.17	1303	2.33	721	428	0.79	15205	28.32
672 673	124	0.25		2.96	722	413	0.84	16131	29.10
			1594		723	415	0.77	16571	29.93 30.75
674	118	0.22	1712	3.18					
675	122	0.23	1834	3.40	725 726	472	0.88	17043	31.62
676	143	0.27	1977	3.67	726	443	0.82	17486	32.44
677	132	0.24	2109	3.91	727	472	0.88	17958	33.32
678	134	0.25	2243	4.16	728	515	0.96	18473	34.28
679	144	0.27	2387	4.43	729	520	0.96	18993	35.24
680	159	0.30	2546	4.72	730	479	0.89	19472	36.13
681	166	0.31	2712	5.03	731	497	0.92	19969	37.05
682	180	0.33	2892	5.37	732	517	0.96	20486	38.01
683	174	0.32	3066	5.69	733	527	0.98	21013	38.99
684	172	0.32	3238	6.01	734	521	0.97	21534	39.96
685	204	0.38	3442	6.39	735	536	0.99	22070	40.95
686	206	0.38	3648	6.77	736	537	1.00	22607	41.95
687	225	0.42	3873	7.19	737	531	0.99	23138	42.93
688	252	0.47	4125	7.65	738	589	1.09	23727	44.02
689	244	0.45	4369	8.11	739	498	0.92	24225	44.95
690	255	0.47	4624	8.58	740	483	0.90	24708	45.84
691	259	0.48	4883	9.06	741	528	0.98	25236	46.82
692	300	0.56	5183	9.62	742	535	0.99	25771	47.82
693	252	0.47	5435	10.08	743	530	0.98	26301	48.80
694	274	0.51	5709	10.59	744	517	0.96	26818	49.76
695	280	0.52	5989	11.11	745	570	1.06	27388	50.82
696	259	0.48	6248	11.59	746	580	1.08	27968	51.89
697	289	0.54	6537	12.13	747	574	1.07	28542	52.96
698	305	0.57	6842	12.70	748	558	1.04	29100	53.99
	287	0.53	7129	13.23	749	533	0.99	29633	54.98

Table F.11. Scale Score Distribution—ELA Grade 7

	Г	0/		<b>C</b> 0/		00	Б	0/		<u> </u>
SS	Freq.	%	Cum. Freq.	Cum. %		SS	Freq.	%	Cum. Freq.	Cum. %
750	549	1.02	30182	56.00		801	185	0.34	50398	93.51
751	576	1.07	30758	57.07		802	169	0.31	50567	93.83
752	537	1.00	31295	58.07		803	172	0.32	50739	94.14
753	604	1.12	31899	59.19		804	170	0.32	50909	94.46
754	560	1.04	32459	60.23		805	146	0.27	51055	94.73
755	553	1.03	33012	61.25		806	160	0.30	51215	95.03
756	543	1.01	33555	62.26		807	144	0.27	51359	95.29
757	551	1.02	34106	63.28		808	118	0.22	51477	95.51
758	507	0.94	34613	64.22		809	135	0.25	51612	95.76
759	519	0.96	35132	65.19		810	127	0.24	51739	96.00
760	530	0.98	35662	66.17		811	145	0.27	51884	96.27
761	517	0.96	36179	67.13		812	131	0.24	52015	96.51
762	536	0.99	36715	68.12		813	113	0.21	52128	96.72
763	527	0.98	37242	69.10		814	99	0.18	52227	96.91
764	466	0.86	37708	69.97		815	98	0.18	52325	97.09
765	459	0.85	38167	70.82		816	91	0.17	52416	97.26
766	493	0.91	38660	71.73		817	92	0.17	52508	97.43
767	486	0.90	39146	72.63		818	92	0.17	52600	97.60
768	457	0.85	39603	73.48		819	76	0.14	52676	97.74
769	482	0.89	40085	74.38		820	83	0.15	52759	97.89
770	424	0.79	40509	75.16		821	63	0.12	52822	98.01
771	446	0.83	40955	75.99		822	72	0.13	52894	98.14
772	423	0.78	41378	76.78		823	75	0.14	52969	98.28
773	397	0.74	41775	77.51		824	71	0.13	53040	98.41
774	421	0.78	42196	78.29		825	55	0.10	53095	98.52
775	401	0.74	42597	79.04		826	54	0.10	53149	98.62
776	425	0.79	43022	79.83		827	49	0.09	53198	98.71
777	386	0.72	43408	80.54		828	53	0.10	53251	98.81
778	393	0.73	43801	81.27		829 820	50	0.09	53301	98.90
779	378	0.70	44179	81.97		830	48	0.09	53349	98.99
780	398	0.74	44577	82.71		831	33	0.06	53382	99.05
781	342	0.63	44919	83.35		832	33	0.06	53415	99.11
782	352	0.65	45271	84.00		833	36	0.07	53451	99.18
783	365	0.68	45636	84.68		834	26	0.05	53477	99.22
784 785	355	0.66	45991	85.33		835	29 26	0.05	53506	99.28
785	350	0.65	46341	85.98		836	36	0.07	53542	99.35 00.28
786	310	0.58	46651	86.56		837	21	0.04	53563	99.38
787 789	335	0.62	46986	87.18		838	19	0.04	53582	99.42
788 780	323	0.60	47309	87.78		839	17	0.03	53599	99.45
789 700	296	0.55	47605	88.33		840 841	15	0.03	53614	99.48
790 701	272	0.50	47877	88.83		841 842	28	0.05	53642	99.53 00.56
791	280	0.52	48157	89.35		842	16	0.03	53658	99.56
792 702	238	0.44	48395	89.79		843	17	0.03	53675	99.59 00.62
793 704	242	0.45	48637	90.24		844 845	16 25	0.03	53691 52716	99.62 00.67
794 705	267	0.50	48904	90.74		845 846	25	0.05	53716	99.67 00.70
795 706	251	0.47	49155	91.21		846 847	20	0.04	53736	99.70 00.72
796	219	0.41	49374	91.61		847	14	0.03	53750	99.73
797 709	213	0.40	49587	92.01		848	12	0.02	53762	99.75
798 700	208	0.39	49795	92.39		849 850	8	0.01	53770	99.77
799	204	0.38	49999	92.77	-	850	125	0.23	53895	100.00
800	214	0.40	50213	93.17						

Table I	F.12. Sc	ale Scor	e Distributio	on—ELA Grade 8					
SS	Freq.	%	Cum. Freq.	Cum. %	SS	Freq.	%	Cum. Freq.	Cum. %
650	513	0.99	513	0.99	700	300	0.58	8862	17.12
651	30	0.06	543	1.05	701	305	0.59	9167	17.71
652	44	0.09	587	1.13	702	326	0.63	9493	18.34
653	48	0.09	635	1.23	703	328	0.63	9821	18.97
654	52	0.10	687	1.33	704	349	0.67	10170	19.65
655	72	0.14	759	1.47	705	325	0.63	10495	20.28
656	50	0.10	809	1.56	706	338	0.65	10833	20.93
657	64	0.12	873	1.69	707	329	0.64	11162	21.56
658	54	0.10	927	1.79	708	331	0.64	11493	22.20
659	52	0.10	979	1.89	709	374	0.72	11867	22.93
660	62	0.12	1041	2.01	710	391	0.76	12258	23.68
661	75	0.14	1116	2.16	711	357	0.69	12615	24.37
662	91	0.18	1207	2.33	712	361	0.70	12976	25.07
663	104	0.20	1311	2.53	713	376	0.73	13352	25.80
664	78	0.15	1389	2.68	714	392	0.76	13744	26.55
665	72	0.14	1461	2.82	715	362	0.70	14106	27.25
666	90	0.14	1551	3.00	716	369	0.71	14475	27.97
667	111	0.21	1662	3.21	717	431	0.83	14906	28.80
668	108	0.21	1770	3.42	718	389	0.05	15295	29.55
669	132	0.21	1902	3.67	719	434	0.75	15729	30.39
670	132	0.20	2032	3.93	720	396	0.04	16125	31.15
670 671	130	0.25	2032	4.18	720	412	0.80	16537	31.95
672	151	0.23	2313	4.18	721	438	0.80	16975	32.80
672		0.29	2313	4.47	723	448	0.85	17423	33.66
	132				723	440	0.87	17423	33.00 34.49
674	158	0.31	2603	5.03	724	430 446	0.85	17833	35.35
675	173	0.33	2776	5.36	725		0.80	18299	36.25
676	166	0.32	2942	5.68		463			
677	186	0.36	3128	6.04	727 728	452	0.87	19214	37.12
678	190	0.37	3318	6.41	728	449	0.87	19663	37.99
679	183	0.35	3501	6.76	729	394	0.76	20057	38.75
680	215	0.42	3716	7.18	730	448	0.87	20505	39.62
681	187	0.36	3903	7.54	731	450	0.87	20955	40.48
682	210	0.41	4113	7.95	732	473	0.91	21428	41.40
683	212	0.41	4325	8.36	733	504	0.97	21932	42.37
684	232	0.45	4557	8.80	734	463	0.89	22395	43.27
685	233	0.45	4790	9.25	735	456	0.88	22851	44.15
686	243	0.47	5033	9.72	736	482	0.93	23333	45.08
687	218	0.42	5251	10.14	737	500	0.97	23833	46.05
688	225	0.43	5476	10.58	738	520	1.00	24353	47.05
689	239	0.46	5715	11.04	739	490	0.95	24843	48.00
690	246	0.48	5961	11.52	740	512	0.99	25355	48.99
691	264	0.51	6225	12.03	741	505	0.98	25860	49.96
692	307	0.59	6532	12.62	742	473	0.91	26333	50.88
693	263	0.51	6795	13.13	743	502	0.97	26835	51.85
694	271	0.52	7066	13.65	744	488	0.94	27323	52.79
695	314	0.61	7380	14.26	745	530	1.02	27853	53.81
696	287	0.55	7667	14.81	746	483	0.93	28336	54.74
697	285	0.55	7952	15.36	747	490	0.95	28826	55.69
698	305	0.59	8257	15.95	748	518	1.00	29344	56.69
699	305	0.59	8562	16.54	749	484	0.94	29828	57.63
698	305	0.59	8257	15.95	748	518	1.00	29344	56.

Table F.12. Scale Score Distribution—ELA Grade 8

	_				_					
SS	Freq.	%	Cum. Freq.	Cum. %		SS	Freq.	%	Cum. Freq.	Cum. %
750	448	0.87	30276	58.49		801	166	0.32	48036	92.81
751	468	0.90	30744	59.40		802	160	0.31	48196	93.11
752	458	0.88	31202	60.28		803	160	0.31	48356	93.42
753	458	0.88	31660	61.17		804	147	0.28	48503	93.71
754	456	0.88	32116	62.05		805	155	0.30	48658	94.01
755	482	0.93	32598	62.98		806	146	0.28	48804	94.29
756	458	0.88	33056	63.86		807	137	0.26	48941	94.55
757	473	0.91	33529	64.78		808	144	0.28	49085	94.83
758	450	0.87	33979	65.65		809	120	0.23	49205	95.06
759	454	0.88	34433	66.52		810	122	0.24	49327	95.30
760	465	0.90	34898	67.42		811	132	0.26	49459	95.55
761	450	0.87	35348	68.29		812	132	0.26	49591	95.81
762	418	0.81	35766	69.10		813	106	0.20	49697	96.01
763	467	0.90	36233	70.00		814	91	0.18	49788	96.19
764	496	0.96	36729	70.96		815	119	0.23	49907	96.42
765	427	0.82	37156	71.79		816	100	0.19	50007	96.61
766	424	0.82	37580	72.60		817	99	0.19	50106	96.80
767	421	0.81	38001	73.42		818	93	0.18	50199	96.98
768	376	0.73	38377	74.14		819	87	0.17	50286	97.15
769	384	0.74	38761	74.89		820	95	0.18	50381	97.34
770	421	0.81	39182	75.70		821	83	0.16	50464	97.50
771	384	0.74	39566	76.44		822	80	0.15	50544	97.65
772	387	0.75	39953	77.19		823	76	0.15	50620	97.80
773	370	0.71	40323	77.90		824	62	0.12	50682	97.92
774	376	0.73	40699	78.63		825	57	0.11	50739	98.03
775	360	0.70	41059	79.33		826	76	0.15	50815	98.17
776	355	0.69	41414	80.01		827	62	0.12	50877	98.29
777	346	0.67	41760	80.68		828	48	0.09	50925	98.39
778	321	0.62	42081	81.30		829	65	0.13	50990	98.51
779	347	0.67	42428	81.97		830	46	0.09	51036	98.60
780	321	0.62	42749	82.59		831	52	0.10	51088	98.70
781	327	0.63	43076	83.22		832	35	0.07	51123	98.77
782	326	0.63	43402	83.85		833	38	0.07	51161	98.84
783	285	0.55	43687	84.40		834	47	0.09	51208	98.93
784	285	0.55	43972	84.95		835	41	0.08	51249	99.01
785	287	0.55	44259	85.51		836	27	0.05	51276	99.06
786	295	0.57	44554	86.08		837	35	0.07	51311	99.13
787	262	0.51	44816	86.58		838	17	0.03	51328	99.17
788	298	0.58	45114	87.16		839	28	0.05	51356	99.22
789	280	0.54	45394	87.70		840	29	0.06	51385	99.28
790	293	0.57	45687	88.27		841	29	0.06	51414	99.33
791	285	0.55	45972	88.82		842	27	0.05	51441	99.38
792	247	0.48	46219	89.29		843	24	0.05	51465	99.43
793	233	0.45	46452	89.74		844	29	0.06	51494	99.49
794	245	0.47	46697	90.22		845	15	0.03	51509	99.52
795	223	0.43	46920	90.65		846	14	0.03	51523	99.54
796	220	0.43	47140	91.07		847	7	0.01	51530	99.56
797	186	0.36	47326	91.43		848	15	0.03	51545	99.58
798	197	0.38	47523	91.81		849	25	0.05	51570	99.63
799	180	0.35	47703	92.16		850	190	0.37	51760	100.00
800	167	0.32	47870	92.48						

Table	r.15. bu	ale Beol	c Distributio	
SS	Freq.	%	Cum. Freq.	Cum. %
650	17	1.18	17	1.18
665	22	1.53	39	2.71
676	36	2.50	75	5.21
684	39	2.71	114	7.92
690	59	4.10	173	12.01
695	62	4.31	235	16.32
699	52	3.61	287	19.93
700	49	3.40	336	23.33
706	65	4.51	401	27.85
709	39	2.71	440	30.56
712	47	3.26	487	33.82
715	44	3.06	531	36.88
717	53	3.68	584	40.56
719	57	3.96	641	44.51
721	38	2.64	679	47.15
723	35	2.43	714	49.58
725	45	3.13	759	52.71
727	34	2.36	793	55.07
729	31	2.30	824	57.22
730	39	2.71	863	59.93
732	21	1.46	884	61.39
734	37	2.57	921	63.96
735	29	2.01	950	65.97
737	27	1.88	977	67.85
738	26	1.81	1003	69.65
740	20 25	1.74	1003	71.39
740	25	1.74	1028	73.19
743	20	1.46	1075	74.65
743 744	30	2.08	11075	76.74
744 746	21	2.08 1.46	1103	78.19
740 747	21	1.40	1120	78.19
747	21	1.40	1147	81.32
748		1.88	1171	81.52
750	27		1215	84.38
751	17	1.18	1213	84.38 85.56
	17	1.18		
754 756	9	0.63	1241	86.18
756	15	1.04	1256	87.22
757	20	1.39	1276	88.61
759	15	1.04	1291	89.65
760	14	0.97	1305	90.63
762	13	0.90	1318	91.53
763	21	1.46	1339	92.99
765	19	1.32	1358	94.31
766	13	0.90	1371	95.21
768	8	0.56	1379	95.76
770	7	0.49	1386	96.25
772	7	0.49	1393	96.74
773	7	0.49	1400	97.22
775	8	0.56	1408	97.78
777	5	0.35	1413	98.13

Table F.13. Scale Score Distribution—CSLA Grade 3	Table F.13.	Scale Score	e Distribution—	-CSLA	Grade 3
---------------------------------------------------	-------------	-------------	-----------------	-------	---------

SS	Freq.	%	Cum. Freq.	Cum. %
779	1	0.07	1414	98.19
782	8	0.56	1422	98.75
784	4	0.28	1426	99.03
787	3	0.21	1429	99.24
789	4	0.28	1433	99.51
792	1	0.07	1434	99.58
796	1	0.07	1435	99.65
799	2	0.14	1437	99.79
804	1	0.07	1438	99.86
809	1	0.07	1439	99.93
815	1	0.07	1440	100.00

SS	Freq.	%	Cum. Freq.	Cum. %			
650	2	0.17	2	0.17			
656	7	0.59	9	0.76			
667	11	0.93	20	1.69			
675	9	0.76	29	2.46			
681	20	1.69	49	4.15			
686	23	1.95	72	6.10			
690	23	1.95	95	8.05			
694	30	2.54	125	10.59			
697	40	3.39	165	13.98			
700	33	2.80	198	16.78			
703	35	2.97	233	19.75			
705	37	3.14	270	22.88			
708	43	3.64	313	26.53			
710	30	2.54	343	29.07			
712	30	2.54	373	31.61			
714	35	2.97	408	34.58			
716	30	2.54	438	37.12			
718	32	2.71	470	39.83			
720	22	1.86	492	41.69			
721	35	2.97	527	44.66			
723	40	3.39	567	48.05			
725	29	2.46	596	50.51			
726	21	1.78	617	52.29			
728	26	2.20	643	54.49			
729	31	2.63	674	57.12			
731	32	2.71	706	59.83			
732	28	2.37	734	62.20			
733	26	2.20	760	64.41			
735	33	2.80	793	67.20			
736	25	2.12	818	69.32			
737	21	1.78	839	71.10			
739	21	1.78	860	72.88			
740	20	1.69	880	72.88			
741	17	1.44	897	76.02			
743	24	2.03	921	78.05			
744	19	1.61	940	79.66			
745	13	1.10	953	80.76			
747	20	1.69	973	82.46			
748	17	1.44	990	83.90			
749	22	1.44	1012	85.76			
750	12	1.02	1012	86.78			
752	12	1.36	1024	88.14			
753	18	1.50	1040	89.66			
755			1038	89.00 90.76			
	13	1.10	1071 1084				
756 757	13	1.10		91.86			
757	14	1.19	1098	93.05			
759	6	0.51	1104	93.56			
760 762	7	0.59	1111	94.15			
762 762	8	0.68	1119	94.83			
763	13	1.10	1132	95.93			

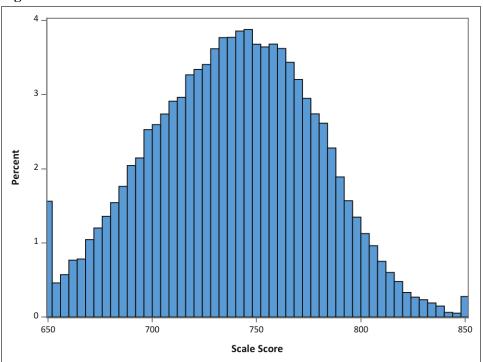
SS	Freq.	%	Cum. Freq.	Cum. %
765	5	0.42	1137	96.36
766	7	0.59	1144	96.95
768	6	0.51	1150	97.46
770	6	0.51	1156	97.97
772	3	0.25	1159	98.22
774	4	0.34	1163	98.56
776	4	0.34	1167	98.90
778	1	0.08	1168	98.98
780	3	0.25	1171	99.24
782	4	0.34	1175	99.58
785	2	0.17	1177	99.75
788	1	0.08	1178	99.83
791	1	0.08	1179	99.92
819	1	0.08	1180	100.00

iei beule b								
Freq. %	Cum. Freq.	Cum. %		SS	Freq.	%	Cum. Freq.	Cum. %
2413 4.2	3 2413	4.28	-	700	297	0.53	8835	15.66
27 0.0	5 2440	4.32	-	701	336	0.60	9171	16.25
32 0.0	5 2472	4.38	-	702	312	0.55	9483	16.81
37 0.0	2509	4.45	-	703	331	0.59	9814	17.39
24 0.0		4.49	-	704	316	0.56	10130	17.95
38 0.0		4.56	-	705	362	0.64	10492	18.59
36 0.0		4.62		706	378	0.67	10870	19.26
58 0.1		4.72		707	390	0.69	11260	19.95
57 0.1		4.82		708	392	0.69	11652	20.65
29 0.0		4.88		709	459	0.81	12111	21.46
52 0.0		4.97		710	467	0.83	12578	22.29
38 0.0		5.03		711	470	0.83	13048	23.12
50 0.0 54 0.1		5.13		712	435	0.77	13483	23.89
63 0.1		5.24		713	462	0.82	13945	24.71
61 0.1		5.35		714	502	0.89	14447	25.60
66 0.1		5.47		715	475	0.84	14922	26.44
57 0.1		5.57		716	497	0.88	15419	27.33
82 0.1		5.71		717	505	0.89	15924	28.22
82 0.1 80 0.1		5.86		718	561	0.89	16485	29.21
80         0.1           77         0.1		5.99		719	532	0.99	17017	30.16
		5.99 6.16		720	532 570	1.01	17587	31.17
					569	1.01		32.18
82 0.1		6.31		721 722	564		18156	
110 0.1		6.50				1.00	18720	33.18
119 0.2		6.71		723	584	1.03	19304	34.21
102 0.1		6.89		724	632	1.12	19936	35.33
115 0.2		7.10		725	590	1.05	20526	36.38
120 0.2		7.31		726	646	1.14	21172	37.52
114 0.2		7.51		727	665	1.18	21837	38.70
124 0.2		7.73		728	680	1.21	22517	39.90
143 0.2		7.98		729	650	1.15	23167	41.06
135 0.2		8.22		730	681	1.21	23848	42.26
138 0.2		8.47		731	679	1.20	24527	43.47
159 0.2		8.75		732	635	1.13	25162	44.59
138 0.2		8.99		733	671	1.19	25833	45.78
164 0.2	5239	9.28		734	730	1.29	26563	47.07
158 0.2	5397	9.56		735	666	1.18	27229	48.25
158 0.2	5555	9.84		736	699	1.24	27928	49.49
181 0.3	5736	10.17	-	737	709	1.26	28637	50.75
203 0.3	5 5939	10.52		738	754	1.34	29391	52.09
205 0.3	6144	10.89		739	708	1.25	30099	53.34
202 0.3	6346	11.25	-	740	704	1.25	30803	54.59
			-	741	757	1.34	31560	55.93
		11.98			691	1.22	32251	57.15
					718		32969	58.43
					747		33716	59.75
								61.04
								62.39
								63.68
								64.91
-, · · · · · ·					682		37310	66.12
210	0.37 0.37 0.39 0.41 0.42 0.47 0.50 0.49	$\begin{array}{cccc} 0.37 & 6556 \\ 0.37 & 6762 \\ 0.39 & 6984 \\ 0.41 & 7217 \\ 0.42 & 7453 \\ 0.47 & 7720 \\ 0.50 & 8000 \\ 0.49 & 8279 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.37       6556       11.62         0.37       6762       11.98         0.39       6984       12.38         0.41       7217       12.79         0.42       7453       13.21         0.47       7720       13.68         0.50       8000       14.18         0.49       8279       14.67	0.37655611.627410.37676211.987420.39698412.387430.41721712.797440.42745313.217450.47772013.687460.50800014.18747	0.37655611.627417570.37676211.987426910.39698412.387437180.41721712.797447470.42745313.217457270.47772013.687467600.50800014.187477290.49827914.67748696		0.37655611.627417571.34315600.37676211.987426911.22322510.39698412.387437181.27329690.41721712.797447471.32337160.42745313.217457271.29344430.47772013.687467601.35352030.50800014.187477291.29359320.49827914.677486961.2336628

 Table F.15. Scale Score Distribution—Science Grade 5

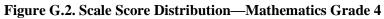
	_		~ ~	~		~~~	_		~ ~	~
SS	Freq.	%	Cum. Freq.	Cum. %		SS	Freq.	%	Cum. Freq.	Cum. %
750	669	1.19	37979	67.31		795	79	0.14	55634	98.59
751	683	1.21	38662	68.52		796	72	0.13	55706	98.72
752	732	1.30	39394	69.81		797	58	0.10	55764	98.82
753	689	1.22	40083	71.03		798	62	0.11	55826	98.93
754	693	1.23	40776	72.26		799	60	0.11	55886	99.04
755	638	1.13	41414	73.39		800	52	0.09	55938	99.13
756	657	1.16	42071	74.56		801	52	0.09	55990	99.22
757	656	1.16	42727	75.72		802	50	0.09	56040	99.31
758	620	1.10	43347	76.82		803	38	0.07	56078	99.38
759	614	1.09	43961	77.91		804	30	0.05	56108	99.43
760	646	1.14	44607	79.05		805	27	0.05	56135	99.48
761	615	1.09	45222	80.14		806	35	0.06	56170	99.54
762	584	1.03	45806	81.18		807	33	0.06	56203	99.60
763	568	1.01	46374	82.18		808	21	0.04	56224	99.64
764	538	0.95	46912	83.14		809	22	0.04	56246	99.68
765	525	0.93	47437	84.07		810	18	0.03	56264	99.71
766	540	0.96	47977	85.02		811	21	0.04	56285	99.75
767	469	0.83	48446	85.85		812	11	0.02	56296	99.77
768	475	0.84	48921	86.70		813	15	0.03	56311	99.79
769	460	0.82	49381	87.51		814	6	0.01	56317	99.80
770	440	0.78	49821	88.29		815	13	0.02	56330	99.83
771	418	0.74	50239	89.03		816	10	0.02	56340	99.84
772	433	0.77	50672	89.80		817	6	0.01	56346	99.85
773	388	0.69	51060	90.49		818	11	0.02	56357	99.87
774	379	0.67	51439	91.16		819	8	0.01	56365	99.89
775	361	0.64	51800	91.80		820	9	0.02	56374	99.90
776	334	0.59	52134	92.39		821	3	0.01	56377	99.91
777	318	0.56	52452	92.95		822	4	0.01	56381	99.92
778	287	0.51	52739	93.46		823	5	0.01	56386	99.93
779	300	0.53	53039	93.99		824	3	0.01	56389	99.93
780	277	0.49	53316	94.49		825	2	0.00	56391	99.93
781	245	0.43	53561	94.92		827	3	0.01	56394	99.94
782	209	0.37	53770	95.29		828	6	0.01	56400	99.95
783	230	0.41	54000	95.70		830	6	0.01	56406	99.96
784	187	0.33	54187	96.03		833	1	0.00	56407	99.96
785	186	0.33	54373	96.36		834	1	0.00	56408	99.96
786	195	0.35	54568	96.70		835	1	0.00	56409	99.97
787	158	0.28	54726	96.98		836	4	0.01	56413	99.97
788	161	0.29	54887	97.27		840	1	0.00	56414	99.98
789	130	0.23	55017	97.50		841	1	0.00	56415	99.98
790	124	0.22	55141	97.72		845	1	0.00	56416	99.98
791	120	0.21	55261	97.93		846	2	0.00	56418	99.98
792	111	0.20	55372	98.13		848	1	0.00	56419	99.98
793	96	0.17	55468	98.30		849	1	0.00	56420	99.99
794	87	0.15	55555	98.45	-	850	8	0.01	56428	100.00

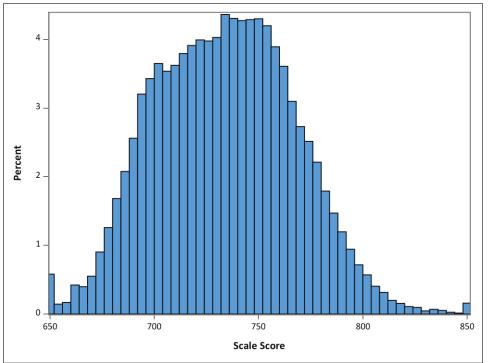
						-	<i>a</i> :	a -	<u>a</u>
SS	Freq.	%	Cum. Freq.	Cum. %	SS	Freq.	%	Cum. Freq.	Cum. %
650	1545	3.03	1545	3.03	700	318	0.62	9133	17.93
651	26	0.05	1571	3.08	701	326	0.64	9459	18.57
652	30	0.06	1601	3.14	702	377	0.74	9836	19.31
653	91	0.18	1692	3.32	703	333	0.65	10169	19.96
654	67	0.13	1759	3.45	704	342	0.67	10511	20.63
655	54	0.11	1813	3.56	705	361	0.71	10872	21.34
656	60	0.12	1873	3.68	706	362	0.71	11234	22.05
657	67	0.13	1940	3.81	707	364	0.71	11598	22.76
658	77	0.15	2017	3.96	708	414	0.81	12012	23.58
659	70	0.14	2087	4.10	709	418	0.82	12430	24.40
660	60	0.12	2147	4.21	710	387	0.76	12817	25.16
661	58	0.11	2205	4.33	711	428	0.84	13245	26.00
662	66	0.13	2271	4.46	712	407	0.80	13652	26.80
663	66	0.13	2337	4.59	713	417	0.82	14069	27.61
664	68	0.13	2405	4.72	714	452	0.89	14521	28.50
665	76	0.15	2481	4.87	715	451	0.89	14972	29.39
666	73	0.14	2554	5.01	716	494	0.97	15466	30.36
667	102	0.20	2656	5.21	717	487	0.96	15953	31.31
668	100	0.20	2756	5.41	718	510	1.00	16463	32.31
669	103	0.20	2859	5.61	719	492	0.97	16955	33.28
670	111	0.22	2970	5.83	720	532	1.04	17487	34.32
671	108	0.21	3078	6.04	721	493	0.97	17980	35.29
672	100	0.20	3178	6.24	722	531	1.04	18511	36.33
673	125	0.25	3303	6.48	723	530	1.04	19041	37.37
674	116	0.23	3419	6.71	724	590	1.16	19631	38.53
675	141	0.28	3560	6.99	725	523	1.03	20154	39.56
676	139	0.27	3699	7.26	726	554	1.09	20708	40.65
677	160	0.31	3859	7.57	727	540	1.06	21248	41.71
678	174	0.34	4033	7.92	728	587	1.15	21835	42.86
679	161	0.32	4194	8.23	729	593	1.16	22428	44.02
680	171	0.34	4365	8.57	730	574	1.13	23002	45.15
681	160	0.31	4525	8.88	731	580	1.14	23582	46.29
682	190	0.37	4715	9.25	732	620	1.22	24202	47.50
683	194	0.38	4909	9.64	733	619	1.21	24821	48.72
684	169	0.33	5078	9.97	734	610	1.20	25431	49.92
685	199	0.39	5277	10.36	735	606	1.19	26037	51.11
686	188	0.37	5465	10.73	736	604	1.19	26641	52.29
687	215	0.42	5680	11.15	737	622	1.22	27263	53.51
688	204	0.40	5884	11.55	738	623	1.22	27886	54.74
689	252	0.49	6136	12.04	739	632	1.24	28518	55.98
690	208	0.41	6344	12.45	740	636	1.25	29154	57.22
691	261	0.51	6605	12.96	741	615	1.21	29769	58.43
692	244	0.48	6849	13.44	742	707	1.39	30476	59.82
693	265	0.52	7114	13.96	743	666	1.31	31142	61.13
694	259	0.52	7373	14.47	744	660	1.30	31802	62.42
695	252	0.49	7625	14.97	745	609	1.20	32411	63.62
696	295	0.49	7023	15.55	745	631	1.24	33042	64.86
697	293	0.58	8201	16.10	740	702	1.38	33744	66.23
698	324	0.55	8525	16.73	748	610	1.20	34354	67.43
699	290	0.04	8323	17.30	740	652	1.20	35006	68.71
099	290	0.37	0013	17.30	/49	032	1.20	55000	00./1


 Table F.16. Scale Score Distribution—Science Grade 8

00	<b>D</b>	0/	<b>C F</b>	<b>O</b> 0/	•	00	E.	0/	<b>C F</b>	0 0
SS	Freq.	%	Cum. Freq.	Cum. %		SS	Freq.	%	Cum. Freq.	Cum. %
750	625	1.23	35631	69.94		788	123	0.24	50180	98.49
751	654	1.28	36285	71.22		789	82	0.16	50262	98.66
752	631	1.24	36916	72.46		790	82	0.16	50344	98.82
753	660	1.30	37576	73.76		791	72	0.14	50416	98.96
754	613	1.20	38189	74.96		792	59	0.12	50475	99.07
755	590	1.16	38779	76.12		793	52	0.10	50527	99.18
756	575	1.13	39354	77.24		794	52	0.10	50579	99.28
757	561	1.10	39915	78.35		795	50	0.10	50629	99.38
758	557	1.09	40472	79.44		796	48	0.09	50677	99.47
759	571	1.12	41043	80.56		797	45	0.09	50722	99.56
760	527	1.03	41570	81.59		798	32	0.06	50754	99.62
761	496	0.97	42066	82.57		799	33	0.06	50787	99.69
762	492	0.97	42558	83.53		800	15	0.03	50802	99.72
763	444	0.87	43002	84.41		801	22	0.04	50824	99.76
764	488	0.96	43490	85.36		802	11	0.02	50835	99.78
765	466	0.91	43956	86.28		803	15	0.03	50850	99.81
766	464	0.91	44420	87.19		804	15	0.03	50865	99.84
767	405	0.79	44825	87.98		805	10	0.02	50875	99.86
768	380	0.75	45205	88.73		806	8	0.02	50883	99.87
769	403	0.79	45608	89.52		807	8	0.02	50891	99.89
770	391	0.77	45999	90.29		808	12	0.02	50903	99.91
771	390	0.77	46389	91.05		809	3	0.01	50906	99.92
772	350	0.69	46739	91.74		810	6	0.01	50912	99.93
773	292	0.57	47031	92.31		811	2	0.00	50914	99.94
774	313	0.61	47344	92.93		812	2	0.00	50916	99.94
775	297	0.58	47641	93.51		813	4	0.01	50920	99.95
776	301	0.59	47942	94.10		815	3	0.01	50923	99.95
777	279	0.55	48221	94.65		816	4	0.01	50927	99.96
778	255	0.50	48476	95.15		817	2	0.00	50929	99.96
779	241	0.47	48717	95.62		818	5	0.01	50934	99.97
780	244	0.48	48961	96.10		819	1	0.00	50935	99.98
781	206	0.40	49167	96.51		821	4	0.01	50939	99.98
782	181	0.36	49348	96.86		822	2	0.00	50941	99.99
783	152	0.30	49500	97.16		823	1	0.00	50942	99.99
784	153	0.30	49653	97.46		824	2	0.00	50944	99.99
785	125	0.25	49778	97.71		826	1	0.00	50945	100.00
786	146	0.29	49924	97.99		827	1	0.00	50946	100.00
787	133	0.26	50057	98.25		831	1	0.00	50947	100.00

SS	Freq.	%	Cum. Freq.	Cum. %	SS	Freq.	%	Cum. Freq.	Cum. %
650	1304	4.10	1304	4.10	700	190	0.60	4540	14.29
651	17	0.05	1321	4.16	701	200	0.63	4740	14.92
652	16	0.05	1337	4.21	702	190	0.60	4930	15.52
653	10	0.03	1347	4.24	703	187	0.59	5117	16.11
654	12	0.04	1359	4.28	704	215	0.68	5332	16.78
655	10	0.03	1369	4.31	705	244	0.77	5576	17.55
656	23	0.07	1392	4.38	706	243	0.76	5819	18.32
657	24	0.08	1416	4.46	707	275	0.87	6094	19.18
658	12	0.04	1428	4.50	708	276	0.87	6370	20.05
659	15	0.05	1443	4.54	709	285	0.90	6655	20.95
660	11	0.03	1454	4.58	710	268	0.84	6923	21.79
661	18	0.06	1472	4.63	711	315	0.99	7238	22.78
662	9	0.03	1481	4.66	712	319	1.00	7557	23.79
663	19	0.06	1500	4.72	713	356	1.12	7913	24.91
664	19	0.06	1519	4.78	714	348	1.10	8261	26.00
665	28	0.09	1547	4.87	715	374	1.18	8635	27.18
666	19	0.05	1566	4.93	716	359	1.13	8994	28.31
667	22	0.07	1588	5.00	717	393	1.24	9387	29.55
668	20	0.06	1608	5.06	718	410	1.29	9797	30.84
669	20	0.07	1629	5.13	719	387	1.22	10184	32.06
670	22	0.07	1651	5.20	720	449	1.41	10633	33.47
671	33	0.10	1684	5.30	721	415	1.31	11048	34.78
672	36	0.10	1720	5.41	722	435	1.37	11483	36.15
673	50	0.11	1720	5.57	723	425	1.34	11908	37.49
674	34	0.10	1804	5.68	724	413	1.30	12321	38.79
675	28	0.09	1832	5.77	725	475	1.50	12796	40.28
676	58	0.18	1890	5.95	726	466	1.47	13262	41.75
677	45	0.13	1935	6.09	727	476	1.50	13202	43.25
678	48	0.14	1983	6.24	728	445	1.40	14183	44.65
679	40 56	0.13	2039	6.42	729	460	1.40	14643	46.10
680	50 66	0.18	2039	6.63	730	464	1.45	15107	40.10
681	72	0.21	2103	6.85	730	404	1.40	15598	49.10
682	72 99	0.25	2177	0.85 7.16	732	513	1.61	16111	49.10 50.72
683	99 79		2355		733	507	1.60	16618	52.31
		0.25		7.41	733 734	488	1.60	17106	52.51 53.85
684	86	0.27	2441	7.68	734 735	400 518	1.63	17624	55.48
685 686	88	0.28 0.30	2529	7.96	736	495	1.05	17024	57.04
	96 08		2625	8.26	730	495			
687	98 105	0.31	2723	8.57			1.53	18604	58.56
688 680	105	0.33	2828	8.90	738 730	468	1.47	19072	60.04
689 600	91 105	0.29	2919	9.19	739 740	438	1.38	19510	61.42
690	105	0.33	3024	9.52	740 741	424	1.33	19934	62.75
691	132	0.42	3156	9.93	741 742	464	1.46	20398	64.21
692	117	0.37	3273	10.30	742 742	484	1.52	20882	65.73 67.20
693	129	0.41	3402	10.71	743	467	1.47	21349	67.20
694	132	0.42	3534	11.12	744	399	1.26	21748	68.46
695	162	0.51	3696	11.63	745	456	1.44	22204	69.90
696	149	0.47	3845	12.10	746	449	1.41	22653	71.31
697	149	0.47	3994	12.57	747	408	1.28	23061	72.59
698	168	0.53	4162	13.10	748	453	1.43	23514	74.02
699	188	0.59	4350	13.69	749	442	1.39	23956	75.41


 Table F.17. Scale Score Distribution—Science Grade 11


SS	Freq.	%	Cum. Freq.	Cum. %	-	SS	Freq.	%	Cum. Freq.	Cum. %
750	365	1.15	24321	76.56	-	781	58	0.18	31287	98.49
751	391	1.23	24712	77.79		782	59	0.10	31346	98.67
752	378	1.19	25090	78.98		783	55	0.17	31401	98.85
753	392	1.23	25482	80.22		784	45	0.14	31446	98.99
754	371	1.17	25853	81.38		785	46	0.14	31492	99.13
755	340	1.07	26193	82.45		786	36	0.11	31528	99.25
756	365	1.15	26558	83.60		787	41	0.13	31569	99.38
757	337	1.06	26895	84.66		788	30	0.09	31599	99.47
758	330	1.04	27225	85.70		789	22	0.07	31621	99.54
759	289	0.91	27514	86.61		790	17	0.05	31638	99.59
760	299	0.94	27813	87.55		791	23	0.07	31661	99.67
761	274	0.86	28087	88.42		792	24	0.08	31685	99.74
762	240	0.76	28327	89.17		793	13	0.04	31698	99.78
763	285	0.90	28612	90.07		794	11	0.03	31709	99.82
764	240	0.76	28852	90.82		795	8	0.03	31717	99.84
765	259	0.82	29111	91.64		796	8	0.03	31725	99.87
766	239	0.75	29350	92.39		797	6	0.02	31731	99.89
767	209	0.66	29559	93.05		798	2	0.01	31733	99.89
768	205	0.65	29764	93.69		799	6	0.02	31739	99.91
769	173	0.54	29937	94.24		800	7	0.02	31746	99.93
770	173	0.54	30110	94.78		801	6	0.02	31752	99.95
771	167	0.53	30277	95.31		802	4	0.01	31756	99.97
772	132	0.42	30409	95.73		803	1	0.00	31757	99.97
773	138	0.43	30547	96.16		804	2	0.01	31759	99.97
774	118	0.37	30665	96.53		805	1	0.00	31760	99.98
775	114	0.36	30779	96.89		807	2	0.01	31762	99.98
776	123	0.39	30902	97.28		808	1	0.00	31763	99.99
777	88	0.28	30990	97.55		816	1	0.00	31764	99.99
778	82	0.26	31072	97.81		824	1	0.00	31765	99.99
779	92	0.29	31164	98.10		836	1	0.00	31766	100.00
780	65	0.20	31229	98.31		842	1	0.00	31767	100.00



**Appendix G: Scale Score Distribution Graphs** 

Figure G.1. Scale Score Distribution—Mathematics Grade 3





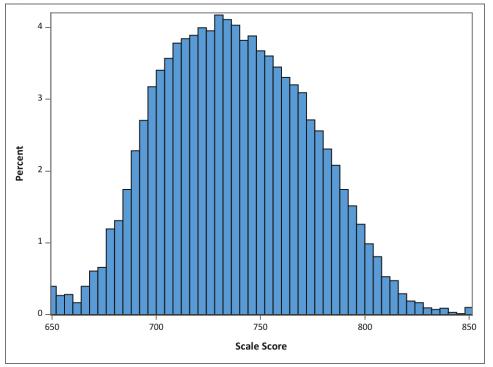
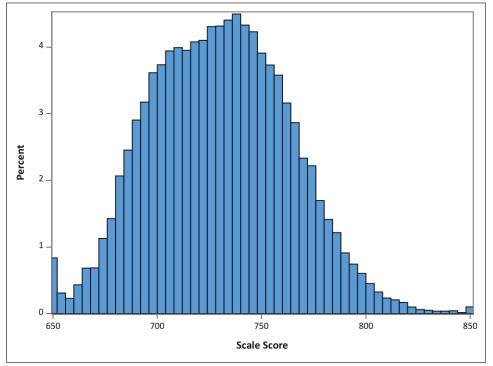




Figure G.3. Scale Score Distribution—Mathematics Grade 5





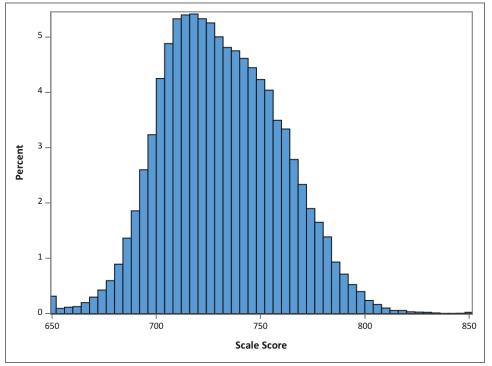
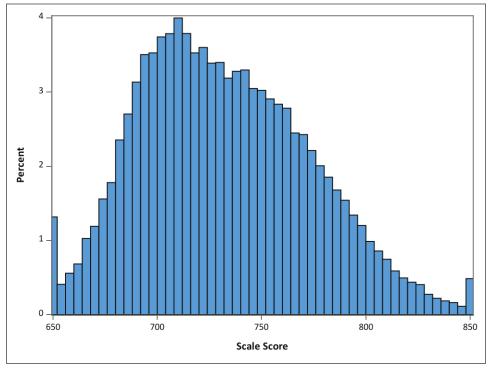




Figure G.5. Scale Score Distribution—Mathematics Grade 7





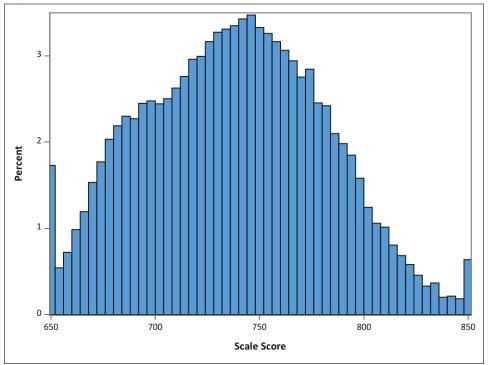
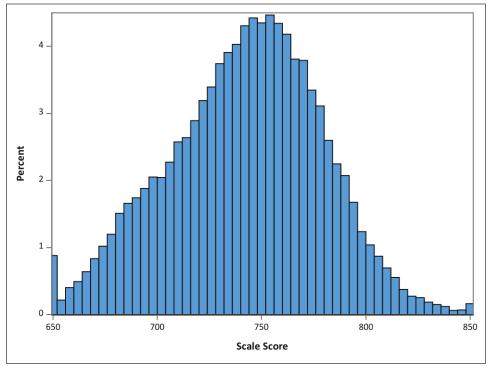




Figure G.7. Scale Score Distribution—ELA Grade 3





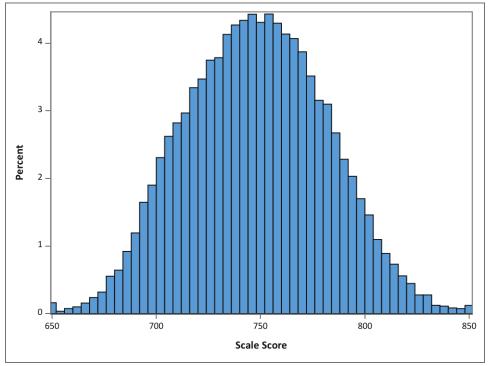
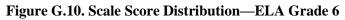
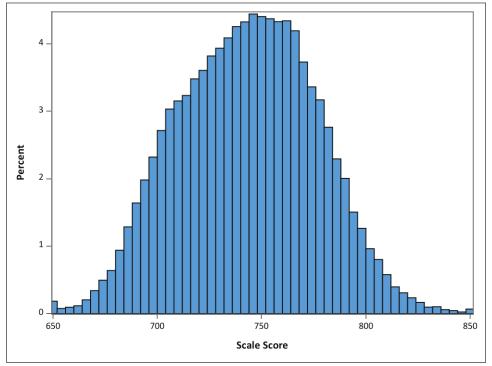





Figure G.9. Scale Score Distribution—ELA Grade 5





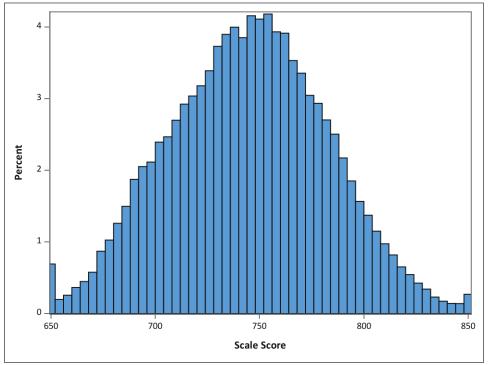
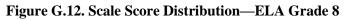
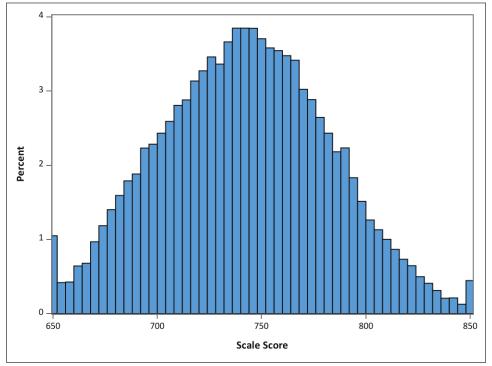





Figure G.11. Scale Score Distribution—ELA Grade 7





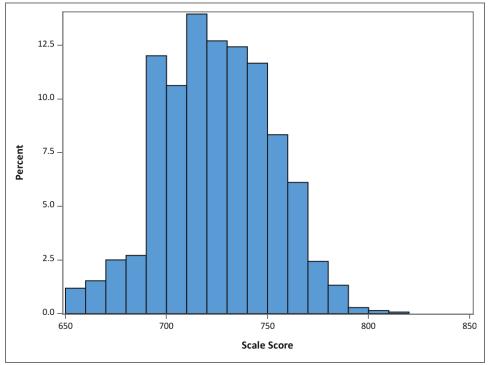
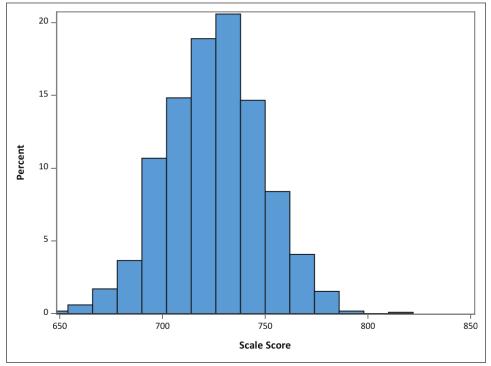




Figure G.13. Scale Score Distribution—CSLA Grade 3





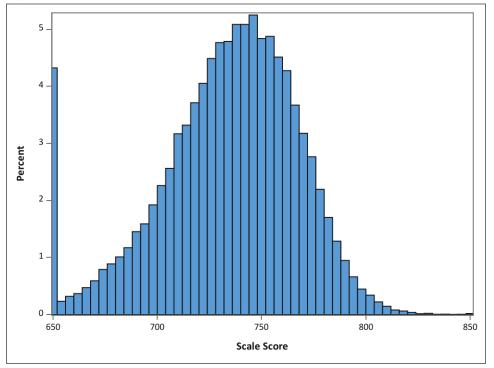
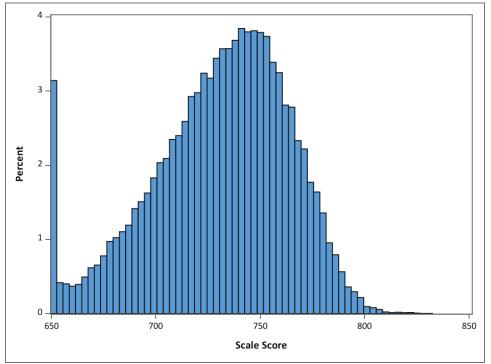




Figure G.15. Scale Score Distribution—Science Grade 5





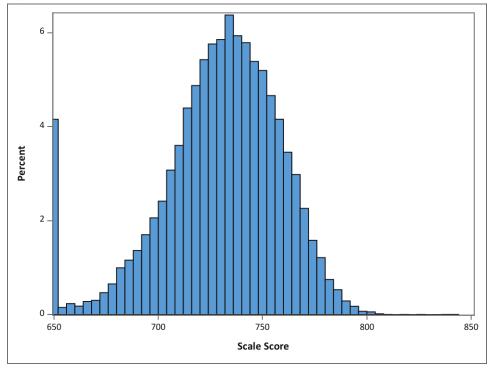



Figure G.17. Scale Score Distribution—Science Grade 11

## **Appendix H: Scale Score Summary Statistics by Demographic Group**

Subgroup	Ν	Mean	SD	Min.	Max.	Alpha
No IEP	49,964	742.73	37.66	650	850	0.91
IEP	7,418	707.40	37.74	650	850	0.92
No Accommodation	53,110	740.61	38.70	650	850	0.92
Accommodation	4,272	707.79	36.53	650	850	0.92
Am. Indian/Alaska Native	354	714.82	39.08	650	850	0.92
Asian	1,982	756.38	41.13	650	850	0.92
Black	2,646	718.98	37.41	650	837	0.92
Hispanic	19,134	720.87	36.42	650	850	0.91
White	29,847	749.50	36.53	650	850	0.91
Hawaiian/Pacific Islander	191	718.52	38.65	650	842	0.92
Two or More Races	3,225	744.19	38.83	650	850	0.92
Missing	*	*	*	*	*	*
No Economic Disadvantage	34,878	750.17	36.90	650	850	0.91
Economic Disadvantage	22,504	719.55	36.03	650	850	0.91
Female	28,318	735.76	38.61	650	850	0.92
Male	29,064	740.51	40.20	650	850	0.92
Language Proficiency NA	47,355	742.64	38.44	650	850	0.92
Language Proficiency NEP	2,969	692.69	30.00	650	850	0.88
Language Proficiency LEP	5,985	721.31	32.89	650	849	0.90
Language Proficiency FEP	1,073	760.69	31.74	650	850	0.88
Not Migrant	57,188	738.26	39.47	650	850	0.92
Migrant	194	709.07	36.61	650	815	0.92

Table H.1. Performance by Subgroup—Mathematics Grade 3

 Table H.2. Performance by Subgroup—Mathematics Grade 4

Subgroup	N	Maan	SD	Min.	Mov	Alpha
Subgroup		Mean	2D	wiin.	Max.	Alpha
No IEP	49,488	737.19	32.34	650	850	0.91
IEP	7,301	706.72	28.70	650	850	0.90
No Accommodation	51,979	735.55	32.95	650	850	0.91
Accommodation	4,810	708.63	29.00	650	838	0.90
Am. Indian/Alaska Native	360	717.56	28.76	650	826	0.89
Asian	2,061	751.36	34.93	650	850	0.92
Black	2,617	718.18	30.54	650	849	0.90
Hispanic	19,426	718.47	30.07	650	850	0.90
White	29,091	742.94	31.43	650	850	0.90
Hawaiian/Pacific Islander	191	717.92	28.93	650	788	0.89
Two or More Races	3,040	738.92	33.82	650	850	0.91
Missing	*	*	*	*	*	*
No Economic Disadvantage	34,768	743.43	31.99	650	850	0.91
Economic Disadvantage	22,021	717.24	29.25	650	850	0.90

Subgroup	Ν	Mean	SD	Min.	Max.	Alpha
Female	27,931	731.09	32.55	650	850	0.91
Male	28,858	735.39	34.23	650	850	0.92
Language Proficiency NA	46,522	737.24	32.90	650	850	0.91
Language Proficiency NEP	2,387	696.96	22.20	650	830	0.83
Language Proficiency LEP	5,674	711.58	24.95	650	819	0.86
Language Proficiency FEP	2,206	744.75	28.33	650	850	0.89
Not Migrant	56,583	733.35	33.48	650	850	0.91
Migrant	206	711.98	26.10	666	792	0.90

Table H.3. Performance by Subgroup—Mathematics Grade 5

•	0	-				
Subgroup	Ν	Mean	SD	Min.	Max.	Alpha
No IEP	49,824	741.12	34.04	650	850	0.92
IEP	7,072	708.26	29.17	650	833	0.91
No Accommodation	52,062	739.23	34.74	650	850	0.92
Accommodation	4,834	713.31	30.92	650	850	0.92
Am. Indian/Alaska Native	358	721.61	32.45	650	850	0.92
Asian	1,976	756.00	35.32	650	850	0.92
Black	2,508	721.61	30.88	650	850	0.91
Hispanic	19,695	721.71	30.91	650	850	0.91
White	29,224	747.25	33.81	650	850	0.92
Hawaiian/Pacific Islander	202	720.47	32.02	650	824	0.92
Two or More Races	2,930	741.56	34.98	650	850	0.92
Missing	*	*	*	*	*	*
No Economic Disadvantage	34,951	747.49	33.90	650	850	0.92
Economic Disadvantage	21,945	720.38	30.46	650	850	0.91
Female	27,700	734.55	34.13	650	850	0.92
Male	29,196	739.38	36.00	650	850	0.93
Language Proficiency NA	46,354	741.18	34.80	650	850	0.92
Language Proficiency NEP	1,456	700.08	23.09	650	819	0.85
Language Proficiency LEP	5,196	709.95	25.17	650	850	0.87
Language Proficiency FEP	3,890	737.66	30.57	650	850	0.91
Not Migrant	56,696	737.13	35.18	650	850	0.93
Migrant	200	710.42	25.74	652	787	0.89

Subgroup	Ν	Mean	SD	Min.	Max.	Alpha
No IEP	49,244	733.37	32.21	650	850	0.90
IEP	6,669	701.25	26.89	650	850	0.86
No Accommodation	51,042	731.87	32.76	650	850	0.90
Accommodation	4,871	705.11	28.67	650	838	0.88
Am. Indian/Alaska Native	342	715.15	29.10	650	830	0.87
Asian	1,970	749.64	36.36	650	850	0.92
Black	2,412	714.22	30.47	650	850	0.89
Hispanic	19,778	714.93	29.15	650	850	0.88
White	28,353	739.35	31.47	650	850	0.90
Hawaiian/Pacific Islander	192	713.80	32.22	650	813	0.90
Two or More Races	2,862	735.20	33.64	650	850	0.91
Missing	*	*	*	*	*	*
No Economic Disadvantage	34,740	739.27	32.15	650	850	0.90
Economic Disadvantage	21,173	713.58	28.65	650	850	0.87
Female	27,266	727.72	32.54	650	850	0.90
Male	28,647	731.27	33.90	650	850	0.91
Language Proficiency NA	45,451	733.69	32.85	650	850	0.90
Language Proficiency NEP	1,364	692.43	21.95	650	778	0.75
Language Proficiency LEP	4,066	701.12	23.73	650	797	0.80
Language Proficiency FEP	5,032	725.10	28.01	650	850	0.87
Not Migrant	55,735	729.61	33.28	650	850	0.91
Migrant	178	706.17	27.07	650	786	0.87

 Table H.4. Performance by Subgroup—Mathematics Grade 6

#### Table H.5. Performance by Subgroup—Mathematics Grade 7

Subgroup	Ν	Mean	SD	Min.	Max.	Alpha
No IEP	48,095	733.85	27.50	650	850	0.90
IEP	6,053	708.20	21.10	650	805	0.81
No Accommodation	49,474	732.75	27.81	650	850	0.90
Accommodation	4,674	712.21	23.27	650	850	0.86
Am. Indian/Alaska Native	351	717.57	25.81	650	800	0.88
Asian	1,737	749.85	30.87	650	850	0.92
Black	2,349	718.12	25.35	650	825	0.87
Hispanic	19,719	718.74	24.03	650	839	0.85
White	27,182	739.56	26.68	650	850	0.89
Hawaiian/Pacific Islander	161	713.78	25.17	660	783	0.86
Two or More Races	2,640	736.01	29.09	650	850	0.91
Missing	*	*	*	*	*	*
No Economic Disadvantage	33,499	739.11	27.52	650	850	0.90
Economic Disadvantage	20,649	717.79	23.53	650	817	0.85
Female	26,065	730.07	28.20	650	850	0.90
Male	28,083	731.83	27.88	650	850	0.90

## Appendix H: Scale Score Summary Statistics by Demographic Group

Subgroup	Ν	Mean	SD	Min.	Max.	Alpha
Language Proficiency NA	44,035	734.64	27.80	650	850	0.90
Language Proficiency NEP	1,470	702.13	17.78	650	773	0.60
Language Proficiency LEP	4,000	708.61	18.39	650	789	0.68
Language Proficiency FEP	4,643	724.64	24.32	650	850	0.86
Not Migrant	53,973	731.04	28.05	650	850	0.90
Migrant	175	711.90	21.01	650	770	0.75

*n-count less than 16

### Table H.6. Performance by Subgroup—Mathematics Grade 8

8					
Ν	Mean	SD	Min.	Max.	Alpha
46,428	735.78	40.30	650	850	0.91
5,608	698.44	28.32	650	850	0.82
47,522	734.22	40.61	650	850	0.91
4,514	705.77	33.81	650	850	0.88
361	715.52	35.54	650	850	0.88
1,700	759.54	44.61	650	850	0.92
2,285	715.64	35.57	650	850	0.89
19,525	714.06	34.32	650	850	0.87
25,671	744.55	39.66	650	850	0.91
155	718.35	37.05	650	847	0.90
2,333	738.13	42.00	650	850	0.91
*	*	*	*	*	*
32,081	743.66	40.51	650	850	0.91
19,955	712.62	33.48	650	850	0.87
24,738	731.30	40.18	650	850	0.91
27,298	732.17	41.46	650	850	0.91
42,810	737.24	40.72	650	850	0.91
1,433	690.72	23.24	650	799	0.66
3,637	698.97	25.30	650	832	0.72
4,156	718.09	32.59	650	850	0.86
51,865	731.86	40.85	650	850	0.91
171	701.06	31.00	650	842	0.86
	N 46,428 5,608 47,522 4,514 361 1,700 2,285 19,525 25,671 155 2,333 * 32,081 19,955 24,738 27,298 42,810 1,433 3,637 4,156 51,865	N         Mean           46,428         735.78           5,608         698.44           47,522         734.22           4,514         705.77           361         715.52           1,700         759.54           2,285         715.64           19,525         714.06           25,671         744.55           155         718.35           2,333         738.13           *         *           32,081         743.66           19,955         712.62           24,738         731.30           27,298         732.17           42,810         737.24           1,433         690.72           3,637         698.97           4,156         718.09	N         Mean         SD           46,428         735.78         40.30           5,608         698.44         28.32           47,522         734.22         40.61           4,514         705.77         33.81           361         715.52         35.54           1,700         759.54         44.61           2,285         715.64         35.57           19,525         714.06         34.32           25,671         744.55         39.66           155         718.35         37.05           2,333         738.13         42.00           *         *         *           32,081         743.66         40.51           19,955         712.62         33.48           24,738         731.30         40.18           27,298         732.17         41.46           42,810         737.24         40.72           1,433         690.72         23.24           3,637         698.97         25.30           4,156         718.09         32.59           51,865         731.86         40.85	N         Mean         SD         Min.           46,428         735.78         40.30         650           5,608         698.44         28.32         650           47,522         734.22         40.61         650           4,514         705.77         33.81         650           361         715.52         35.54         650           1,700         759.54         44.61         650           2,285         715.64         35.57         650           19,525         714.06         34.32         650           25,671         744.55         39.66         650           155         718.35         37.05         650           2,333         738.13         42.00         650           2,333         738.13         42.00         650           19,955         712.62         33.48         650           24,738         731.30         40.18         650           27,298         732.17         41.46         650           1,433         690.72         23.24         650           3,637         698.97         25.30         650           3,637         698.97         2	N         Mean         SD         Min.         Max.           46,428         735.78         40.30         650         850           5,608         698.44         28.32         650         850           47,522         734.22         40.61         650         850           4,514         705.77         33.81         650         850           361         715.52         35.54         650         850           1,700         759.54         44.61         650         850           2,285         715.64         35.57         650         850           19,525         714.06         34.32         650         850           155         718.35         37.05         650         850           155         718.35         37.05         650         850           155         718.35         37.05         650         850           155         718.35         37.05         650         850           155         718.36         40.51         650         850           19,955         712.62         33.48         650         850           19,955         712.62         33.48         65

Subgroup	Ν	Mean	SD	Min.	Max.	Alpha
No IEP	48,525	742.90	41.68	650	850	0.90
IEP	7,212	699.16	36.89	650	850	0.91
No Accommodation	51,771	740.06	42.80	650	850	0.91
Accommodation	3,966	700.44	37.30	650	850	0.90
Am. Indian/Alaska Native	352	715.99	41.05	650	850	0.91
Asian	1,945	749.64	44.45	650	850	0.91
Black	2,644	719.27	40.65	650	850	0.91
Hispanic	17,620	719.42	40.03	650	850	0.91
White	29,752	748.14	41.85	650	850	0.90
Hawaiian/Pacific Islander	184	717.64	37.17	650	840	0.89
Two or More Races	3,237	744.72	43.25	650	850	0.91
Missing	*	*	*	*	*	*
No Economic Disadvantage	34,560	749.60	41.65	650	850	0.90
Economic Disadvantage	21,177	717.08	39.06	650	850	0.90
Female	27,479	740.31	44.40	650	850	0.91
Male	28,258	734.25	42.67	650	850	0.91
Language Proficiency NA	47,322	741.55	42.92	650	850	0.91
Language Proficiency NEP	2,050	683.23	24.68	650	850	0.82
Language Proficiency LEP	5,293	714.68	34.57	650	850	0.88
Language Proficiency FEP	1,072	761.68	33.27	656	850	0.84
Not Migrant	55,564	737.33	43.62	650	850	0.91
Migrant	173	706.67	38.55	650	800	0.90

Table H.7. Performance by Subgroup—ELA Grade 3

## Table H.8. Performance by Subgroup—ELA Grade 4

Subgroup	Ν	Mean	SD	Min.	Max.	Alpha
No IEP	48,349	747.08	34.02	650	850	0.89
IEP	7,170	704.08	33.50	650	850	0.90
No Accommodation	50,988	744.43	35.71	650	850	0.90
Accommodation	4,531	708.79	34.03	650	850	0.90
Am. Indian/Alaska Native	361	723.35	33.95	650	812	0.90
Asian	2,033	752.83	36.03	650	850	0.89
Black	2,621	725.48	34.91	650	850	0.90
Hispanic	18,202	726.27	34.54	650	850	0.89
White	29,056	751.45	34.70	650	850	0.89
Hawaiian/Pacific Islander	193	724.24	34.64	650	813	0.87
Two or More Races	3,050	747.55	36.32	650	850	0.89
Missing	*	*	*	*	*	*
No Economic Disadvantage	34,522	752.21	34.54	650	850	0.89
Economic Disadvantage	20,997	723.96	33.77	650	850	0.89
Female	27,290	745.24	36.61	650	850	0.90
Male	28,229	737.93	36.80	650	850	0.90

### Appendix H: Scale Score Summary Statistics by Demographic Group

Subgroup	Ν	Mean	SD	Min.	Max.	Alpha
Language Proficiency NA	46,561	745.67	36.08	650	850	0.90
Language Proficiency NEP	1,647	689.26	23.09	650	799	0.78
Language Proficiency LEP	5,101	715.41	26.33	650	807	0.84
Language Proficiency FEP	2,210	753.42	25.44	650	842	0.83
Not Migrant	55,337	741.62	36.86	650	850	0.90
Migrant	182	711.40	32.69	650	806	0.77

*n-count less than 16

Table H.9. Performance by Subgroup—ELA Grade 5

Subgroup	Ν	Mean	SD	Min.	Max.	Alpha
No IEP	49,580	751.91	32.08	650	850	0.88
IEP	7,077	715.86	28.33	650	847	0.88
No Accommodation	51,842	749.85	33.10	650	850	0.89
Accommodation	4,815	721.05	29.85	650	849	0.89
Am. Indian/Alaska Native	362	732.29	31.28	653	847	0.90
Asian	1,954	757.76	33.27	650	850	0.88
Black	2,504	733.90	30.98	650	843	0.88
Hispanic	19,484	732.90	30.93	650	850	0.88
White	29,208	757.31	32.00	650	850	0.88
Hawaiian/Pacific Islander	201	732.91	30.71	662	821	0.88
Two or More Races	2,941	752.62	33.30	650	850	0.89
Missing	*	*	*	*	*	*
No Economic Disadvantage	34,895	757.40	32.24	650	850	0.88
Economic Disadvantage	21,762	731.38	29.86	650	850	0.88
Female	27,614	751.19	34.21	650	850	0.89
Male	29,043	743.81	33.02	650	850	0.89
Language Proficiency NA	46,414	751.94	33.05	650	850	0.89
Language Proficiency NEP	1,159	699.71	20.15	650	789	0.78
Language Proficiency LEP	5,185	717.15	22.64	650	835	0.82
Language Proficiency FEP	3,899	747.88	25.84	659	850	0.84
Not Migrant	56,468	747.50	33.79	650	850	0.89
Migrant	189	717.99	24.29	658	793	0.81

*n-count less than 16

### Table H.10. Performance by Subgroup—ELA Grade 6

Subgroup	Ν	Mean	SD	Min.	Max.	Alpha				
No IEP	48,929	747.07	31.43	650	850	0.90				
IEP	6,673	711.20	26.72	650	850	0.89				
No Accommodation	50,912	745.25	32.25	650	850	0.90				
Accommodation	4,690	715.83	29.13	650	850	0.90				
Am. Indian/Alaska Native	345	729.36	31.32	656	817	0.91				
Asian	1,937	756.54	33.15	650	850	0.90				
Black	2,397	730.09	31.07	650	831	0.90				

Subgroup	Ν	Mean	SD	Min.	Max.	Alpha
Hispanic	19,559	728.98	30.07	650	850	0.89
White	28,323	752.05	31.35	650	850	0.90
Hawaiian/Pacific Islander	191	728.38	31.43	650	850	0.90
Two or More Races	2,846	749.07	32.62	650	850	0.90
Missing	*	*	*	*	*	*
No Economic Disadvantage	34,649	752.09	31.50	650	850	0.90
Economic Disadvantage	20,953	727.35	29.53	650	850	0.89
Female	27,126	746.52	33.41	650	850	0.90
Male	28,476	739.19	32.25	650	850	0.91
Language Proficiency NA	45,433	747.08	32.44	650	850	0.90
Language Proficiency NEP	1,067	697.17	18.48	650	770	0.78
Language Proficiency LEP	4,060	711.62	21.74	650	800	0.83
Language Proficiency FEP	5,042	738.69	26.21	650	834	0.87
Not Migrant	55,431	742.85	33.01	650	850	0.90
Migrant	171	715.44	26.80	650	784	0.89

## Table H.11. Performance by Subgroup—ELA Grade 7

Subgroup	Ν	Mean	SD	Min.	Max.	Alpha
No IEP	47,822	748.68	36.34	650	850	0.90
IEP	6,073	707.11	30.00	650	850	0.87
No Accommodation	49,420	746.78	37.16	650	850	0.90
Accommodation	4,475	713.27	33.64	650	850	0.89
Am. Indian/Alaska Native	349	726.72	35.65	650	847	0.89
Asian	1,721	762.69	39.70	650	850	0.90
Black	2,349	729.86	35.23	650	850	0.89
Hispanic	19,487	727.96	34.53	650	850	0.89
White	27,185	755.14	35.80	650	850	0.89
Hawaiian/Pacific Islander	158	722.27	33.11	650	793	0.87
Two or More Races	2,637	751.74	37.90	650	850	0.90
Missing	*	*	*	*	*	*
No Economic Disadvantage	33,423	754.68	36.45	650	850	0.90
Economic Disadvantage	20,472	726.55	33.86	650	850	0.89
Female	25,982	749.49	37.67	650	850	0.90
Male	27,913	738.88	37.63	650	850	0.90
Language Proficiency NA	44,086	749.34	37.04	650	850	0.90
Language Proficiency NEP	1,167	690.47	21.72	650	795	0.80
Language Proficiency LEP	3,992	708.57	25.75	650	812	0.83
Language Proficiency FEP	4,650	737.20	30.81	650	850	0.87
Not Migrant	53,731	744.08	38.00	650	850	0.90
Migrant	164	715.00	32.39	650	803	0.88

Subgroup	Ν	Mean	SD	Min.	Max.	Alpha
No IEP	46,148	746.20	39.11	650	850	0.90
IEP	5,612	701.80	30.65	650	850	0.88
No Accommodation	47,482	744.23	39.90	650	850	0.90
Accommodation	4,278	709.76	35.75	650	850	0.90
Am. Indian/Alaska Native	358	727.82	37.13	650	842	0.90
Asian	1,672	760.84	41.43	650	850	0.90
Black	2,268	728.63	38.45	650	850	0.90
Hispanic	19,315	725.30	37.17	650	850	0.89
White	25,646	752.97	38.83	650	850	0.90
Hawaiian/Pacific Islander	155	728.97	40.93	650	829	0.90
Two or More Races	2,340	748.61	39.88	650	850	0.90
Missing	*	*	*	*	*	*
No Economic Disadvantage	32,002	752.40	39.20	650	850	0.90
Economic Disadvantage	19,758	723.55	36.55	650	850	0.89
Female	24,638	748.30	40.63	650	850	0.90
Male	27,122	735.10	39.73	650	850	0.90
Language Proficiency NA	42,820	747.13	39.73	650	850	0.90
Language Proficiency NEP	1,168	681.88	21.96	650	785	0.81
Language Proficiency LEP	3,632	704.83	26.56	650	803	0.84
Language Proficiency FEP	4,140	730.83	31.66	650	850	0.88
Not Migrant	51,594	741.50	40.66	650	850	0.90
Migrant	166	706.48	35.63	650	850	0.89

Table H.12. Performance by Subgroup—ELA Grade 8

 Table H.13. Performance by Subgroup—CSLA Grade 3

Subgroup	Ν	Mean	SD	Min.	Max.	Alpha
No IEP	1,298	726.57	26.81	650	815	0.87
IEP	142	702.92	22.67	650	768	0.83
No Accommodation	1,239	726.31	26.94	650	815	0.87
Accommodation	201	711.43	26.40	650	804	0.86
Am. Indian/Alaska Native	*	*	*	*	*	*
Asian	*	*	*	*	*	*
Black	*	*	*	*	*	*
Hispanic	1,430	724.27	27.40	650	815	0.87
White	*	*	*	*	*	*
Hawaiian/Pacific Islander	*	*	*	*	*	*
Two or More Races	*	*	*	*	*	*
Missing	*	*	*	*	*	*
No Economic Disadvantage	241	723.17	28.72	650	809	0.87
Economic Disadvantage	1,199	724.45	27.07	650	815	0.87
Female	758	728.42	27.15	650	815	0.87
Male	682	719.58	26.83	650	789	0.87

Subgroup	Ν	Mean	SD	Min.	Max.	Alpha
Language Proficiency NA	*	*	*	*	*	*
Language Proficiency NEP	747	716.48	26.41	650	815	0.86
Language Proficiency LEP	693	732.59	25.86	650	809	0.87
Language Proficiency FEP	*	*	*	*	*	*
Not Migrant	1,426	724.30	27.33	650	815	0.87
Migrant	*	*	*	*	*	*

Table H.14. Performance by Subgroup—CSLA Grade 4

Subgroup	Ν	Mean	SD	Min.	Max.	Alpha
No IEP	1,070	727.02	22.61	650	819	0.83
IEP	110	701.26	22.20	650	763	0.85
No Accommodation	976	727.18	23.10	656	819	0.84
Accommodation	204	712.36	23.21	650	766	0.84
Am. Indian/Alaska Native	*	*	*	*	*	*
Asian	*	*	*	*	*	*
Black	*	*	*	*	*	*
Hispanic	1,170	724.65	23.82	650	819	0.84
White	*	*	*	*	*	*
Hawaiian/Pacific Islander	*	*	*	*	*	*
Two or More Races	*	*	*	*	*	*
Missing	*	*	*	*	*	*
No Economic Disadvantage	191	724.99	22.15	667	780	0.83
Economic Disadvantage	989	724.54	24.09	650	819	0.84
Female	604	729.55	23.42	656	819	0.83
Male	576	719.44	23.05	650	782	0.84
Language Proficiency NA	*	*	*	*	*	*
Language Proficiency NEP	604	719.00	23.65	650	819	0.84
Language Proficiency LEP	576	730.50	22.47	656	791	0.83
Language Proficiency FEP	*	*	*	*	*	*
Not Migrant	1,163	724.64	23.81	650	819	0.84
Migrant	17	722.82	21.94	675	766	0.83

Subgroup	Ν	Mean	SD	Min.	Max.	Alpha
No IEP	49,442	737.36	31.44	650	850	0.89
IEP	6,986	702.63	35.36	650	828	0.90
No Accommodation	52,265	734.95	33.08	650	850	0.89
Accommodation	4,163	709.33	35.54	650	808	0.90
Am. Indian/Alaska Native	359	718.09	34.55	650	809	0.89
Asian	1,967	743.48	31.65	650	828	0.89
Black	2,481	716.45	33.46	650	799	0.85
Hispanic	19,509	717.78	33.01	650	850	0.87
White	29,002	743.83	30.04	650	850	0.88
Hawaiian/Pacific Islander	201	713.37	33.88	650	787	0.87
Two or More Races	2,906	738.46	32.61	650	850	0.89
Missing	*	*	*	*	*	*
No Economic Disadvantage	34,695	743.48	30.24	650	850	0.88
Economic Disadvantage	21,733	716.43	32.88	650	830	0.86
Female	27,472	732.43	32.52	650	850	0.88
Male	28,956	733.66	35.22	650	850	0.90
Language Proficiency NA	45,968	737.92	32.25	650	850	0.89
Language Proficiency NEP	1,433	683.42	29.54	650	824	0.77
Language Proficiency LEP	5,151	703.01	28.49	650	802	0.78
Language Proficiency FEP	3,876	733.66	25.30	650	823	0.84
Not Migrant	56,232	733.17	33.90	650	850	0.89
Migrant	196	702.77	32.18	650	779	0.82

Table H.15. Performance by Subgroup—Science Grade 5

 Table H.16. Performance by Subgroup—Science Grade 8

Subgroup	Ν	Mean	SD	Min.	Max.	Alpha
No IEP	45,490	734.22	31.32	650	831	0.92
IEP	5,457	700.59	31.12	650	806	0.90
No Accommodation	47,278	732.45	32.23	650	831	0.92
Accommodation	3,669	707.03	33.43	650	811	0.92
Am. Indian/Alaska Native	352	722.27	30.33	650	797	0.90
Asian	1,671	744.97	31.80	650	826	0.92
Black	2,199	716.73	32.35	650	795	0.90
Hispanic	19,164	716.28	31.85	650	821	0.90
White	25,117	741.48	29.19	650	831	0.91
Hawaiian/Pacific Islander	153	719.93	33.50	650	783	0.92
Two or More Races	2,286	736.36	31.63	650	818	0.92
Missing	*	*	*	*	*	*
No Economic Disadvantage	31,412	739.88	30.23	650	831	0.92
Economic Disadvantage	19,535	715.72	31.72	650	818	0.90
Female	24,168	731.51	31.69	650	827	0.92
Male	26,779	729.81	34.08	650	831	0.92

## Appendix H: Scale Score Summary Statistics by Demographic Group

Subgroup	Ν	Mean	SD	Min.	Max.	Alpha
Language Proficiency NA	41,893	735.73	31.24	650	831	0.92
Language Proficiency NEP	1,397	682.70	26.90	650	776	0.77
Language Proficiency LEP	3,568	700.53	26.29	650	775	0.79
Language Proficiency FEP	4,089	720.82	27.65	650	802	0.87
Not Migrant	50,777	730.71	32.95	650	831	0.92
Migrant	170	702.89	30.93	650	787	0.90

*n-count less than 16

 Table H.17. Performance by Subgroup—Science Grade 11

Subgroup	Ν	Mean	SD	Min.	Max.	Alpha
No IEP	28,972	731.31	28.38	650	842	0.89
IEP	2,795	704.99	29.74	650	796	0.85
No Accommodation	29,510	730.20	28.88	650	842	0.90
Accommodation	2,257	713.27	32.38	650	800	0.90
Am. Indian/Alaska Native	223	721.12	26.21	650	774	0.85
Asian	969	736.31	30.08	650	800	0.90
Black	1,399	715.67	29.72	650	795	0.87
Hispanic	13,088	718.12	28.11	650	807	0.86
White	14,679	739.17	26.47	650	842	0.89
Hawaiian/Pacific Islander	93	717.69	32.73	650	781	0.90
Two or More Races	1,309	734.57	29.59	650	836	0.90
Missing	*	*	*	*	*	*
No Economic Disadvantage	20,014	735.32	28.25	650	842	0.90
Economic Disadvantage	11,753	718.22	28.33	650	808	0.86
Female	14,935	728.68	27.15	650	824	0.88
Male	16,832	729.27	31.36	650	842	0.91
Language Proficiency NA	27,032	733.32	27.61	650	842	0.89
Language Proficiency NEP	814	683.63	26.65	650	752	0.47
Language Proficiency LEP	1,985	699.42	25.31	650	775	0.67
Language Proficiency FEP	1,936	718.05	22.37	650	783	0.78
Not Migrant	31,674	729.04	29.45	650	842	0.90
Migrant	93	712.71	29.12	650	765	0.85

## **Appendix I: Summary Statistics for Points Earned by Subclaim**

able 1.1. Follits	Laineu S	ouiiiiiai	y ny Su	inclaim—		matics
Subclaim	Grade	Mean	SD	Min.	Max.	Average % Correct
Subclaim A	3	11.4	5.3	0	22	51.91
	4	10.9	6.2	0	24	45.45
	5	11.5	6.0	0	23	49.85
	6	6.8	4.8	0	20	33.79
	7	6.9	4.7	0	23	29.86
	8	9.0	5.2	0	24	37.62
Subclaim B	3	5.0	2.5	0	9	55.70
	4	2.7	1.8	0	7	38.32
	5	3.5	2.3	0	8	43.73
	6	4.7	2.4	0	11	42.26
	7	2.8	1.9	0	8	35.70
	8	2.8	1.9	0	7	40.17
Subclaim C	3	3.6	2.7	0	11	32.65
	4	3.5	3.3	0	11	31.44
	5	2.5	2.7	0	11	22.75
	6	3.4	3.1	0	11	30.99
	7	2.5	2.8	0	11	22.97
	8	1.9	2.4	0	11	16.84
Subclaim D	3	3.1	2.3	0	9	33.99
	4	2.3	2.6	0	9	25.56
	5	2.3	2.5	0	9	25.43
	6	2.0	2.4	0	9	22.33
	7	2.1	2.2	0	9	23.21
	8	1.8	2.4	0	9	19.69

 Table I.1. Points Earned Summary by Subclaim—Mathematics

0.1.1.					N	Average %
Subclaim	Grade	Mean	SD	Min.	Max.	Correct
RL	3	6.6	4.2	0	17	38.85
	4	8.5	4.0	0	18	47.04
	5	8.4	4.5	0	18	46.86
	6	8.5	4.7	0	18	47.45
	7	7.0	4.0	0	18	39.08
	8	8.2	4.4	0	18	45.46
RI	3	7.7	3.7	0	14	54.98
	4	6.8	4.3	0	18	37.63
	5	6.3	3.3	0	18	35.14
	6	8.5	4.5	0	22	38.68
	7	7.5	4.6	0	22	33.94
	8	9.1	5.0	0	22	41.26
RV	3	6.2	2.8	0	10	61.63
	4	5.7	2.6	0	10	57.13
	5	4.5	2.0	0	8	56.46
	6	4.5	2.3	0	8	56.44
	7	4.8	2.8	0	10	48.31
	8	5.4	2.7	0	10	54.21
WE (unweighted)	3	1.1	1.1	0	6	18.39
	4	1.9	1.3	0	7	27.00
	5	1.9	1.4	0	7	27.09
	6	1.8	1.6	0	8	22.26
	7	2.4	1.9	0	8	30.02
	8	2.5	2.0	0	8	31.28
WKL	3	1.1	1.1	0	6	18.53
	4	1.5	1.4	0	6	24.34
	5	1.5	1.4	0	6	25.54
	6	1.7	1.6	0	6	28.13
	7	2.1	1.8	0	6	34.45
	8	2.4	2.0	0	6	39.53

Table I.2. Points Earned Summary by Subclaim—ELA

*Note*. RL = Reading: Literary Text, RI = Reading: Informational Text, RV = Reading: Vocabulary, WE = Writing: Written Expression, WKL = Writing: Knowledge and Use of Language Conventions. Results for WE are unweighted.

Tuble 1.5. I onto L	anneu	ummar,	, <b>b</b> , bu	ocianni	COLI	
Subclaim	Grade	Mean	SD	Min.	Max.	Average % Correct
RL	3	6.1	4.0	0	17	35.71
	4	8.3	4.4	0	20	41.25
RI	3	3.4	2.8	0	14	24.44
	4	4.3	3.1	0	17	23.76
RV	3	4.3	2.9	0	10	42.56
	4	4.0	2.3	0	8	50.64
WE (unweighted)	3	1.4	1.6	0	6	23.92
	4	1.9	1.8	0	7	26.86
WKL	3	1.6	1.6	0	6	26.97
	4	2.2	1.8	0	6	36.34

Table I.3. Points Earned Summary by Subclaim—CSLA

*Note*. RL = Reading: Literary Text, RI = Reading: Informational Text, RV = Reading: Vocabulary, WE = Writing: Written Expression, WKL = Writing: Knowledge and Use of Language Conventions. Results for WE are unweighted.

						Average %
Subclaim	Grade	Mean	SD	Min.	Max.	Correct
Physical Science	5	6.5	4.3	0	18	36.36
	8	7.3	4.4	0	21	35.04
	11	7.2	4.0	0	18	39.91
Life Science	5	5.2	2.7	0	12	42.92
	8	7.9	4.8	0	22	36.00
	11	5.7	3.3	0	16	35.73
Earth and Space Science	5	8.7	4.4	0	21	41.52
	8	5.7	3.7	0	18	31.71
	11	5.0	3.2	0	16	31.55

Table I.4. Points Earned Summary by Subclaim—Science

# **Appendix J: Classical Item-Level Statistics**

Item	Omit %	<i>P</i> -value	Item–Total Correlation
1	0.85	0.73	0.50
2	0.28	0.69	0.59
3	0.28	0.45	0.60
4	3.63	0.37	0.65
5	1.02	0.42	0.56
6	2.50	0.47	0.42
7	0.41	0.58	0.56
8	0.46	0.28	0.45
9	0.46	0.79	0.35
10	3.51	0.39	0.61
11	1.03	0.22	0.40
12	0.32	0.62	0.51
13	0.41	0.52	0.67
14	0.39	0.45	0.67
15	1.04	0.58	0.64
16	0.18	0.81	0.45
17	0.08	0.77	0.50
18	3.22	0.54	0.43
19	0.70	0.77	0.51
20	1.30	0.52	0.48
21	0.05	0.83	0.46
22	0.14	0.49	0.44
23	0.67	0.60	0.59
24	0.25	0.80	0.39
25	0.27	0.58	0.59
26	0.10	0.35	0.59
27	2.53	0.34	0.70
28	2.14	0.46	0.46
29	0.77	0.38	0.74
30	0.43	0.35	0.73
31	0.68	0.32	0.78

## Table J.1. SR Item Classical Statistics—Mathematics Grade 3

#### Table J.2. CR Item Classical Statistics—Mathematics Grade 3

Item	Max. Points	Omit %	0%	1%	2%	3%	4%	P-value	Item-Total Correlation
1	3	2.70	35.79	17.25	32.43	11.82	_	0.39	0.61
2	4	1.13	32.79	39.66	17.39	7.52	1.51	0.26	0.65

Item	Omit %	<i>P</i> -value	Item–Total Correlation
1	1.25	0.21	0.53
2	0.06	0.53	0.53
3	0.98	0.40	0.60
4	0.38	0.18	0.56
5	1.05	0.18	0.59
6	0.52	0.62	0.40
7	0.95	0.40	0.49
8	3.17	0.28	0.65
9	1.77	0.41	0.42
10	0.21	0.62	0.53
11	3.81	0.30	0.58
12	0.10	0.42	0.46
13	0.09	0.64	0.52
14	0.43	0.62	0.45
15	0.05	0.72	0.56
16	0.51	0.45	0.53
17	0.10	0.43	0.39
18	3.57	0.45	0.54
19	1.23	0.27	0.40
20	1.56	0.31	0.71
21	1.40	0.53	0.50
22	0.27	0.54	0.67
23	1.03	0.37	0.68
24	0.61	0.36	0.54
25	0.13	0.67	0.61
26	0.35	0.41	0.75
27	6.77	0.26	0.74

Table J.3. SR Item Classical Statistics—Mathematics Grade 4

Table J.4. CR Item Classical Statistics—Mathematics Grade 4

Item	Max. Points	Omit %	0%	1%	2%	3%	4%	5%	6%	P- value	Item-Total Correlation
1	3	2.33	60.04	11.86	10.47	15.31	_	_	_	0.26	0.69
2	3	3.57	74.06	7.36	5.18	9.83	_	_	_	0.16	0.63
3	6	1.02	41.51	10.15	15.19	6.21	9.34	7.56	9.02	0.31	0.78

Item	Omit %	<i>P</i> -value	Item–Total Correlation
1	0.08	0.61	0.54
2	1.27	0.35	0.47
3	0.65	0.64	0.51
4	2.23	0.37	0.60
5	0.24	0.35	0.63
6	0.08	0.84	0.30
7	0.96	0.48	0.63
8	0.68	0.37	0.57
9	0.73	0.43	0.57
10	0.25	0.33	0.50
11	0.25	0.67	0.58
12	0.41	0.73	0.33
13	1.79	0.63	0.54
14	0.11	0.63	0.42
15	0.13	0.28	0.41
16	0.07	0.73	0.54
17	0.57	0.53	0.49
18	3.10	0.45	0.37
19	0.14	0.43	0.51
20	0.07	0.58	0.70
21	2.32	0.39	0.61
22	0.49	0.53	0.61
23	1.29	0.37	0.76
24	0.07	0.44	0.72
25	0.62	0.29	0.61
26	1.72	0.28	0.76
27	0.16	0.23	0.77
28	1.85	0.25	0.79

Table J.5. SR Item Classical Statistics—Mathematics Grade 5

Table J.6. CR Item Classical Statistics—Mathematics Grade 5

Item	Max. Points	Omit %	0%	1%	2%	3%	4%	P-value	Item-Total Correlation
1	3	5.03	54.18	25.89	10.79	4.10		0.20	0.68
2	4	2.18	53.17	14.45	15.12	6.05	9.04	0.25	0.72

Item	Omit %	<i>P</i> -value	Item-Total Correlation
1	0.19	0.58	0.53
2	0.24	0.22	0.47
3	0.38	0.59	0.43
4	0.67	0.10	0.39
5	1.67	0.32	0.63
6	0.28	0.24	0.54
7	0.33	0.27	0.38
8	0.79	0.24	0.56
9	3.24	0.28	0.56
10	3.12	0.30	0.66
11	2.22	0.24	0.61
12	0.87	0.51	0.49
13	0.64	0.40	0.16
14	0.68	0.31	0.53
15	0.18	0.50	0.40
16	0.36	0.28	0.23
17	0.88	0.27	0.29
18	0.44	0.61	0.49
19	0.17	0.32	0.55
20	0.80	0.40	0.72
21	1.32	0.21	0.67
22	0.03	0.58	0.56
23	0.02	0.44	0.38
24	0.34	0.38	0.68
25	2.92	0.18	0.79

Table J.7. SR Item Classical Statistics—Mathematics Grade 6

 Table J.8. CR Item Classical Statistics—Mathematics Grade 6

Item	Max. Points	Omit %	0%	1%	2%	3%	4%	P-value	Item-Total Correlation
1	3	0.76	37.04	11.92	29.19	21.09	_	0.45	0.73
2	3	0.82	47.98	18.76	23.83	8.61	_	0.31	0.70
3	4	2.48	67.61	12.60	6.55	7.34	3.42	0.15	0.71
4	4	1.62	40.78	11.53	15.90	20.23	9.95	0.36	0.75

Item	Omit %	<i>P</i> -value	Item–Total Correlation
1	0.74	0.44	0.58
2	0.21	0.21	0.50
3	0.08	0.49	0.55
4	0.34	0.19	0.56
5	1.14	0.14	0.57
6	0.80	0.31	0.39
7	0.39	0.26	0.67
8	0.40	0.49	0.31
9	0.15	0.67	0.50
10	0.46	0.45	0.44
11	0.12	0.21	0.38
12	2.79	0.57	0.37
13	0.45	0.31	0.27
14	0.35	0.22	0.45
15	0.43	0.23	0.47
16	0.17	0.41	0.21
17	0.21	0.54	0.44
18	0.15	0.21	0.25
19	0.66	0.55	0.46
20	1.09	0.13	0.41
21	0.88	0.16	0.68
22	0.21	0.38	0.47
23	2.14	0.13	0.60
24	0.61	0.22	0.69
25	0.27	0.30	0.71
26	2.00	0.26	0.82

 Table J.9. SR Item Classical Statistics—Mathematics Grade 7

### Table J.10. CR Item Classical Statistics—Mathematics Grade 7

Item	Max. Points	Omit %	0%	1%	2%	3%	4%	P-value	Item-Total Correlation
1	3	4.13	56.03	14.53	15.65	9.66	_	0.25	0.77
2	3	2.80	56.76	29.01	9.56	1.88	_	0.18	0.65
3	4	2.65	56.62	18.62	6.02	7.33	8.76	0.22	0.77

Item	Omit %	<i>P</i> -value	Item–Total Correlation
1	1.50%	0.15	0.65
2	0.72%	0.39	0.61
3	1.28%	0.26	0.60
4	2.15%	0.13	0.61
5	1.23%	0.33	0.52
6	0.17%	0.31	0.51
7	0.63%	0.26	0.59
8	0.09%	0.43	0.34
9	0.10%	0.41	0.33
10	0.17%	0.34	0.44
11	0.14%	0.29	0.44
12	0.13%	0.84	0.32
13	0.14%	0.73	0.38
14	0.47%	0.27	0.45
15	0.37%	0.66	0.45
16	0.07%	0.54	0.36
17	0.23%	0.48	0.29
18	0.24%	0.51	0.50
19	1.45%	0.26	0.71
20	0.11%	0.24	0.50
21	1.07%	0.38	0.66
22	0.08%	0.46	0.53
23	0.48%	0.33	0.73
24	0.68%	0.23	0.76
25	3.74%	0.18	0.83

Table J.11. SR Item Classical Statistics—Mathematics Grade 8

 Table J.12. CR Item Classical Statistics—Mathematics Grade 8

Item	Max. Points	Omit %	0%	1%	2%	3%	4%	P-value	Item-Total Correlation
1	3	3.44	67.66	7.93	12.81	8.16	_	0.19	0.76
2	3	1.87	62.94	14.93	7.28	12.99	_	0.23	0.70
3	4	5.14	76.59	8.74	4.14	3.82	1.58	0.09	0.69

	Item	Omit %	<i>P</i> -value	Item–Total Correlation
	1	0.59	0.52	0.50
	2	0.89	0.37	0.57
	3	0.76	0.47	0.59
	4	0.69	0.45	0.68
	5	1.59	0.77	0.61
	6	2.42	0.78	0.52
	7	2.22	0.54	0.60
	8	2.70	0.57	0.59
	9	1.97	0.57	0.52
	10	0.03	0.59	0.54
	11	0.14	0.45	0.56
	12	0.10	0.48	0.54
	13	0.24	0.50	0.60
	14	1.46	0.29	0.52
	15	0.13	0.57	0.58
	16	0.18	0.61	0.53
	17	0.23	0.55	0.67
	18	0.45	0.54	0.60
_	19	0.51	0.28	0.43

Table J.13. SR Item Classical Statistics—ELA Grade 3

## Table J.14. CR Item Classical Statistics—ELA Grade 3

Itam	Max.	Omit %	0%	1%	2%	3%	4%	P-	Item-Total
Item	Points	Omit %	0%	1%	2%	5%	4%	value	Correlation
PCR_1_WE	3	1.58	52.05	40.50	5.67	0.20	_	0.17	0.70
PCR_1_WKL	3	1.58	48.96	43.56	5.66	0.24	_	0.19	0.61
PCR_2_WE	3	2.38	49.89	37.28	10.37	0.08	_	0.19	0.70
PCR_2_WKL	3	2.38	48.94	43.81	4.75	0.13	_	0.18	0.59

Item	Omit %	<i>P</i> -value	Item–Total Correlation
1	0.09	0.37	0.36
2	0.06	0.50	0.56
3	0.05	0.41	0.41
4	0.07	0.64	0.64
5	0.46	0.40	0.52
6	1.44	0.39	0.43
7	0.62	0.27	0.48
8	0.72	0.30	0.52
9	1.10	0.39	0.35
10	0.85	0.44	0.36
11	1.30	0.39	0.47
12	0.34	0.46	0.47
13	0.23	0.75	0.54
14	0.35	0.44	0.61
15	0.43	0.30	0.39
16	0.40	0.47	0.61
17	0.16	0.61	0.59
18	0.15	0.63	0.44
19	0.16	0.74	0.47
20	0.19	0.50	0.69
21	0.17	0.68	0.65

Table J.15. SR Item Classical Statistics—ELA Grade 4

Table J.16.	<b>CR</b> Item	Classical	Statistics-	-ELA Grade 4
-------------	----------------	-----------	-------------	--------------

	Max.							P-	Item-Total
Item	Points	Omit %	0%	1%	2%	3%	4%	value	Correlation
PCR_1_WE	3	0.82	24.91	44.32	24.74	5.21	_	0.36	0.75
PCR_1_WKL	3	0.82	42.36	38.80	14.45	3.57	_	0.26	0.70
PCR_2_WE	4	0.78	35.02	53.11	9.59	1.27	0.23	0.19	0.72
PCR_2_WKL	3	0.78	46.09	43.21	8.52	1.41	_	0.21	0.68

Item	Omit %	<i>P</i> -value	Item–Total Correlation
1	0.25	0.78	0.52
2	0.24	0.59	0.57
3	0.41	0.48	0.54
4	0.48	0.49	0.52
5	0.36	0.27	0.44
6	0.33	0.63	0.66
7	0.41	0.58	0.64
8	0.19	0.53	0.50
9	0.18	0.44	0.50
10	0.17	0.32	0.36
11	0.19	0.49	0.49
12	0.18	0.32	0.44
13	0.05	0.35	0.31
14	0.18	0.53	0.32
15	0.08	0.50	0.41
16	0.09	0.22	0.34
17	0.39	0.50	0.57
18	0.05	0.48	0.44
19	0.34	0.37	0.45
20	0.61	0.44	0.49

Table J.17. SR Item Classical Statistics—ELA Grade 5

### Table J.18. CR Item Classical Statistics—ELA Grade 5

Item	Max. Points	Omit %	0%	1%	2%	3%	4%	P- value	Item-Total Correlation
PCR_1_WE	3	0.65	23.45	34.76	34.23	6.92	_	0.41	0.79
PCR_1_WKL	3	0.65	38.76	36.66	19.62	4.32	_	0.30	0.75
PCR_2_WE	4	1.41	48.27	38.28	9.96	1.72	0.37	0.16	0.75
PCR_2_WKL	3	1.41	48.11	39.63	9.04	1.81	-	0.21	0.70

Item	Omit %	<i>P</i> -value	Item–Total Correlation
1	0.14	0.60	0.44
2	0.19	0.41	0.63
3	0.17	0.36	0.42
4	0.17	0.39	0.51
5	0.21	0.67	0.53
6	0.16	0.57	0.45
7	0.15	0.41	0.55
8	0.15	0.48	0.62
9	0.12	0.47	0.55
10	0.14	0.48	0.63
11	0.44	0.39	0.46
12	0.54	0.34	0.38
13	0.33	0.42	0.38
14	0.40	0.42	0.36
15	0.05	0.55	0.55
16	0.13	0.41	0.54
17	0.05	0.51	0.57
18	0.04	0.57	0.55
19	0.15	0.36	0.48
20	0.10	0.32	0.37
21	0.03	0.52	0.49
22	0.06	0.64	0.53

Table J.19. SR Item Classical Statistics—ELA Grade 6

Table J.20	CR Item	Classical	Statistics-	-ELA	Grade 6
------------	---------	-----------	-------------	------	---------

Item	Max. Points	Omit %	0%	1%	2%	3%	4%	P- value	Item-Total Correlation
PCR_1_WE	4	0.95	42.46	35.13	16.61	3.95	0.92	0.21	0.78
PCR_1_WKL	3	0.95	46.89	31.08	15.95	5.14	_	0.26	0.77
PCR_2_WE	4	1.10	35.58	41.64	17.70	3.78	0.20	0.22	0.79
PCR_2_WKL	3	1.10	38.22	39.47	16.98	4.24	_	0.29	0.77

Item	Omit %	<i>P</i> -value	Item–Total Correlation
1	0.46	0.39	0.43
2	0.34	0.36	0.56
3	0.48	0.22	0.46
4	0.39	0.49	0.57
5	0.45	0.29	0.35
6	0.50	0.16	0.37
7	1.04	0.38	0.47
8	1.81	0.34	0.51
9	1.80	0.25	0.53
10	1.30	0.42	0.55
11	0.16	0.25	0.42
12	0.10	0.54	0.41
13	0.22	0.42	0.45
14	0.18	0.58	0.58
15	0.25	0.34	0.48
16	0.24	0.29	0.33
17	0.30	0.35	0.52
18	0.24	0.50	0.52
19	0.26	0.50	0.59
20	0.25	0.44	0.39
21	0.25	0.55	0.61
22	0.26	0.58	0.60
23	0.28	0.41	0.51

 Table J.21. SR Item Classical Statistics—ELA Grade 7

## Table J.22. CR Item Classical Statistics—ELA Grade 7

Item	Max. Points	Omit %	0%	1%	2%	3%	4%	P- value	Item-Total Correlation
PCR_1_WE	4	1.57	31.01	28.69	24.40	11.46	2.87	0.31	0.82
PCR_1_WKL	3	1.57	36.91	25.80	22.59	13.12	_	0.37	0.81
PCR_2_WE	4	1.55	26.68	38.63	25.62	6.30	1.21	0.28	0.83
PCR_2_WKL	3	1.55	37.66	34.45	20.12	6.22	_	0.31	0.80

Item	Omit %	<i>P</i> -value	Item–Total Correlation
1	0.23	0.64	0.59
2	0.31	0.50	0.54
3	0.17	0.25	0.26
4	0.14	0.60	0.60
5	0.03	0.72	0.43
6	0.13	0.56	0.51
7	0.28	0.27	0.37
8	0.66	0.63	0.43
9	1.00	0.46	0.58
10	0.86	0.31	0.50
11	1.25	0.34	0.45
12	0.36	0.54	0.66
13	0.28	0.50	0.56
14	0.34	0.44	0.50
15	0.37	0.43	0.47
16	0.30	0.35	0.49
17	0.32	0.43	0.49
18	0.19	0.56	0.58
19	0.32	0.48	0.57
20	0.32	0.39	0.48
21	0.37	0.58	0.54
22	0.45	0.46	0.45
23	0.46	0.25	0.44

Table J.23. SR Item Classical Statistics—ELA Grade 8

## Table J.24. CR Item Classical Statistics—ELA Grade 8

Item	Max. Points	Omit %	0%	1%	2%	3%	4%	P- value	Item-Total Correlation
PCR_1_WE	4	1.85	33.09	26.86	25.42	10.81	1.97	0.30	0.85
PCR_1_WKL	3	1.85	34.41	26.31	24.63	12.80	_	0.38	0.83
PCR_2_WE	4	2.04	29.53	24.59	29.05	12.26	2.54	0.32	0.85
PCR_2_WKL	3	2.04	31.85	24.41	28.51	13.19	_	0.40	0.82

Item	Omit %	<i>P</i> -value	Item–Total Correlation
1	1.39	0.39	0.57
2	1.94	0.38	0.48
3	1.39	0.50	0.47
4	1.32	0.47	0.56
5	2.29	0.37	0.53
6	11.67	0.38	0.58
7	14.72	0.29	0.44
8	13.68	0.32	0.48
9	13.61	0.27	0.52
10	15.35	0.16	0.18
11	2.78	0.48	0.61
12	3.54	0.33	0.57
13	3.89	0.23	0.24
14	3.26	0.38	0.60
15	2.64	0.48	0.57
16	2.15	0.28	0.40
17	3.33	0.31	0.34
18	2.78	0.39	0.54
19	6.74	0.08	0.39

Table J.25. SR Item Classical Statistics—CSLA Grade 3

### Table J.26. CR Item Classical Statistics—CSLA Grade 3

Item	Max. Points	Omit %	0%	1%	2%	3%	4%	P- value	Item-Total Correlation
PCR_1_WE	3	6.74	40.49	33.33	14.38	5.07	-	0.26	0.81
PCR_1_WKL	3	6.74	37.29	36.81	13.19	5.97	_	0.27	0.61
PCR_2_WE	3	8.47	50.21	22.08	13.82	5.42	_	0.22	0.70
PCR_2_WKL	3	8.47	37.15	36.04	10.28	8.06	-	0.27	0.60

Item	Omit %	<i>P</i> -value	Item-Total Correlation
1	1.02	0.61	0.52
2	1.19	0.45	0.34
3	1.36	0.31	0.42
4	1.27	0.61	0.42
5	1.10	0.66	0.53
6	1.19	0.20	0.47
7	1.19	0.55	0.55
8	1.02	0.30	0.52
9	1.78	0.62	0.57
10	1.19	0.53	0.59
11	2.63	0.46	0.45
12	2.88	0.22	0.32
13	3.05	0.19	0.23
14	2.63	0.24	0.22
15	2.80	0.37	0.44
16	3.98	0.21	0.33
17	6.10	0.34	0.52
18	3.14	0.25	0.42
19	3.81	0.36	0.50
20	3.31	0.18	0.16
21	4.07	0.14	0.12

Table J.27. SR Item Classical Statistics—CSLA Grade 4

Item	Max. Points	Omit %	0%	1%	2%	3%	4%	P- value	Item-Total Correlation
PCR_1_WE	3	1.95	45.93	19.58	23.90	8.64	_	0.31	0.68
PCR_1_WKL	3	1.95	28.81	36.69	15.76	16.78	_	0.40	0.55
PCR_2_WE	4	2.71	43.73	26.53	15.51	8.98	2.54	0.24	0.79
PCR_2_WKL	3	2.71	35.17	36.61	13.64	11.86	—	0.33	0.57

Item	Omit %	<i>P</i> -value	Item–Total Correlation
1	0.64	0.60	0.59
2	0.04	0.41	0.38
3	0.26	0.45	0.59
4	0.38	0.22	0.33
5	1.07	0.23	0.32
6	1.06	0.51	0.32
7	0.10	0.54	0.46
8	1.45	0.15	0.35
9	1.00	0.41	0.45
10	1.30	0.26	0.53
11	0.08	0.41	0.28
12	0.05	0.34	0.59
13	0.08	0.38	0.53
14	0.07	0.31	0.45
15	0.01	0.78	0.46
16	0.29	0.36	0.20
17	0.45	0.49	0.24
18	0.28	0.32	0.22
19	0.21	0.61	0.34
20	0.23	0.32	0.28
21	0.25	0.28	0.25
22	0.67	0.55	0.33
23	0.12	0.42	0.27
24	0.01	0.56	0.32
25	0.41	0.58	0.46
26	0.01	0.70	0.41
27	0.08	0.46	0.45

Table J.29. SR Item Classical Statistics—Science Grade 5

#### Table J.30. CR Item Classical Statistics—Science Grade 5

Table 5.50. CN term classical statistics – Science Grade 5							
Item	Max. Points	Omit %	0%	1%	2%	P-value	Item-Total Correlation
1	2	4.78	80.48	13.75	1.00	0.08	0.38
2	2	2.19	74.50	18.53	4.78	0.14	0.35
3	2	3.98	91.04	4.18	0.80	0.03	0.16
4	2	3.59	63.55	27.89	4.98	0.19	0.42
5	2	2.79	65.94	12.55	18.73	0.25	0.58
6	2	2.19	65.94	28.29	3.59	0.18	0.51
7	2	6.37	78.69	12.95	1.99	0.08	0.50
8	2	5.58	68.53	16.14	9.76	0.18	0.54
9	2	2.79	70.72	17.13	9.36	0.18	0.57
10	2	2.39	84.66	8.96	3.98	0.08	0.46
11	2	2.19	77.09	15.94	4.78	0.13	0.47
12	2	2.19	42.23	48.21	7.37	0.31	0.52
13	2	2.97	54.42	23.91	18.70	0.31	0.64
14	2	2.12	56.17	22.19	19.52	0.31	0.50
15	2	4.34	74.22	16.80	4.64	0.13	0.39

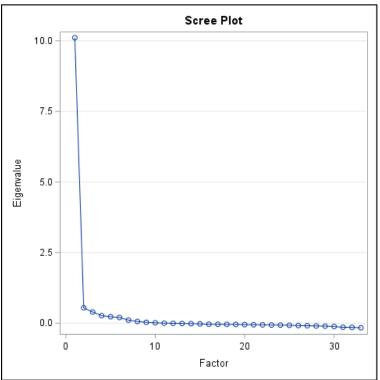
Item	Max. Points	Omit %	0%	1%	2%	P-value	Item-Total Correlation
16	2	1.79	52.86	31.09	14.26	0.30	0.50
17	2	1.07	33.52	14.78	50.62	0.58	0.58
18	2	1.51	44.54	41.07	12.87	0.33	0.56
19	2	5.07	65.56	19.80	9.58	0.19	0.52
20	2	3.02	37.82	31.84	27.32	0.43	0.68
21	2	1.57	36.72	20.40	41.31	0.52	0.65
22	2	1.72	59.03	19.07	20.18	0.30	0.61
23	2	1.49	47.18	18.62	32.72	0.42	0.62
24	2	0.97	19.20	40.02	39.81	0.60	0.64

Table J	Table J.31. SR Item Classical Statistics—Science						
Item	Omit %	<i>P</i> -value	Item–Total Correlation				
1	0.01	0.52	0.38				
2	0.03	0.68	0.46				
3	0.11	0.31	0.61				
4	0.14	0.45	0.41				
5	0.42	0.16	0.48				
6	0.06	0.13	0.29				
7	0.46	0.10	0.32				
8	1.03	0.29	0.38				
9	0.19	0.15	0.15				
10	0.06	0.61	0.40				
11	0.20	0.31	0.49				
12	0.31	0.60	0.46				
13	0.33	0.26	0.57				
14	0.38	0.33	0.40				
15	0.40	0.13	0.10				
16	0.53	0.40	0.44				
17	0.34	0.62	0.47				
18	0.06	0.07	0.26				
19	0.14	0.16	0.29				
20	0.08	0.40	0.45				
21	1.09	0.60	0.55				
22	0.13	0.38	0.49				
23	0.22	0.28	0.37				
24	0.09	0.54	0.40				
25	0.19	0.21	0.36				
26	0.27	0.54	0.20				
27	0.05	0.58	0.44				
28	0.35	0.49	0.56				
29	0.09	0.46	0.54				
30	0.07	0.62	0.41				
31	0.06	0.71	0.31				
32	0.08	0.46	0.38				
33	0.16	0.75	0.48				

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Table 5.52. CK Item Classical Statistics – Science Offace 6							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Item	Max. Points	Omit %	0%	1%	2%	P-value	Item-Total Correlation
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	2	12.18	81.73	5.45	0.64	0.03	0.48
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	2	7.37	77.24	12.18	3.21	0.09	0.51
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	2	11.22	83.97	4.17	0.64	0.03	0.36
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	2	11.86	73.08	13.46	1.60	0.08	0.53
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	2	10.58	58.01	20.83	10.58	0.21	0.52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	2	10.58	82.05	5.45	1.92	0.05	0.56
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	2	12.50	81.41	5.13	0.96	0.04	0.48
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	2	8.33	77.56	8.33	5.77	0.10	0.48
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	2	8.01	65.71	19.23	7.05	0.17	0.59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	2	8.65	86.86	4.49	0.00	0.02	0.21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	2	6.73	85.90	6.73	0.64	0.04	0.42
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	2	9.94	88.14	1.60	0.32	0.01	0.24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	2	6.09	60.26	28.85	4.81	0.19	0.53
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	2	10.26	82.05	7.37	0.32	0.04	0.42
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	2	3.77	59.25	27.96	9.02	0.23	0.65
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	2	2.31	56.21	21.79	19.69	0.31	0.61
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	2	2.87	79.37	14.23	3.54	0.11	0.56
20       2       2.60       66.47       20.18       10.74       0.21       0.60         21       2       3.63       63.08       23.76       9.53       0.21       0.66         22       2       0.89       57.14       18.89       23.08       0.33       0.45         23       2       2.53       36.19       20.40       40.87       0.51       0.68         24       2       2.18       63.59       26.51       7.72       0.21       0.55         25       2       2.19       74.25       18.92       4.65       0.14       0.55         26       2       3.63       72.64       10.37       13.35       0.19       0.53         27       2       1.79       34.16       36.16       27.89       0.46       0.63	18	2	3.81	54.34	27.33	14.52	0.28	0.68
21       2       3.63       63.08       23.76       9.53       0.21       0.66         22       2       0.89       57.14       18.89       23.08       0.33       0.45         23       2       2.53       36.19       20.40       40.87       0.51       0.68         24       2       2.18       63.59       26.51       7.72       0.21       0.55         25       2       2.19       74.25       18.92       4.65       0.14       0.55         26       2       3.63       72.64       10.37       13.35       0.19       0.53         27       2       1.79       34.16       36.16       27.89       0.46       0.63	19	2	2.85	45.70	25.36	26.09	0.39	0.57
22       2       0.89       57.14       18.89       23.08       0.33       0.45         23       2       2.53       36.19       20.40       40.87       0.51       0.68         24       2       2.18       63.59       26.51       7.72       0.21       0.55         25       2       2.19       74.25       18.92       4.65       0.14       0.55         26       2       3.63       72.64       10.37       13.35       0.19       0.53         27       2       1.79       34.16       36.16       27.89       0.46       0.63	20	2	2.60	66.47	20.18	10.74	0.21	0.60
23       2       2.53       36.19       20.40       40.87       0.51       0.68         24       2       2.18       63.59       26.51       7.72       0.21       0.55         25       2       2.19       74.25       18.92       4.65       0.14       0.55         26       2       3.63       72.64       10.37       13.35       0.19       0.53         27       2       1.79       34.16       36.16       27.89       0.46       0.63	21	2	3.63	63.08	23.76	9.53	0.21	0.66
24         2         2.18         63.59         26.51         7.72         0.21         0.55           25         2         2.19         74.25         18.92         4.65         0.14         0.55           26         2         3.63         72.64         10.37         13.35         0.19         0.53           27         2         1.79         34.16         36.16         27.89         0.46         0.63	22	2	0.89	57.14	18.89	23.08	0.33	0.45
25         2         2.19         74.25         18.92         4.65         0.14         0.55           26         2         3.63         72.64         10.37         13.35         0.19         0.53           27         2         1.79         34.16         36.16         27.89         0.46         0.63	23	2	2.53	36.19	20.40	40.87	0.51	0.68
26         2         3.63         72.64         10.37         13.35         0.19         0.53           27         2         1.79         34.16         36.16         27.89         0.46         0.63	24	2	2.18	63.59	26.51	7.72	0.21	0.55
27 2 1.79 34.16 36.16 27.89 0.46 0.63	25	2	2.19	74.25	18.92	4.65	0.14	0.55
	26	2	3.63	72.64	10.37	13.35	0.19	0.53
28         2         3.88         52.38         33.31         10.43         0.27         0.59	27	2	1.79	34.16	36.16	27.89	0.46	0.63
	28	2	3.88	52.38	33.31	10.43	0.27	0.59

Table J.32. CR Item Classical Statistics—Science Grade 8

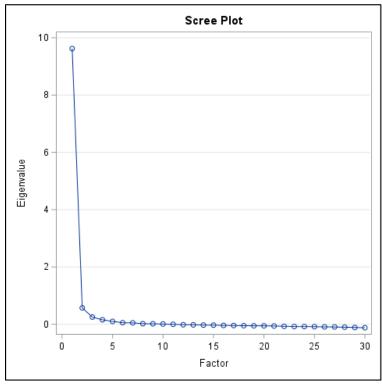
Table J.33. SR Item Classical Statistics—Science Grade 11


Item	Omit %	<i>P</i> -value	Item–Total Correlation
1	0.79	0.18	0.46
2	4.38	0.27	0.46
3	0.15	0.46	0.47
4	1.41	0.46	0.54
5	0.37	0.41	0.27
6	0.29	0.59	0.55
7	0.20	0.07	0.25
8	0.04	0.66	0.58
9	0.07	0.43	0.42
10	0.13	0.19	0.41
11	0.06	0.21	0.37
12	0.07	0.45	0.50
13	0.19	0.50	0.53

Item	Omit %	<i>P</i> -value	Item-Total Correlation
14	0.02	0.40	0.48
15	0.40	0.34	0.17
16	0.72	0.51	0.46
17	0.26	0.36	0.37
18	0.29	0.81	0.36
19	0.21	0.43	0.26
20	0.22	0.51	0.38
21	0.06	0.27	0.23
22	0.03	0.57	0.34
23	0.06	0.46	0.42
24	0.06	0.40	0.34
25	2.68	0.39	0.12
26	0.01	0.57	0.34

 Table J.34. CR Item Classical Statistics—Science Grade 11

Item	Max. Points	Omit %	0%	1%	2%	P-value	Item-Total Correlation
1	2	18.66	77.03	3.83	0.48	0.02	0.14
2	2	20.10	66.99	12.44	0.48	0.07	0.26
3	2	15.31	65.55	12.44	6.70	0.13	0.53
4	2	10.53	50.72	37.80	0.96	0.20	0.49
5	2	18.18	48.80	27.75	5.26	0.19	0.50
6	2	10.05	78.95	10.05	0.96	0.06	0.33
7	2	16.75	53.11	25.36	4.78	0.17	0.44
8	2	15.31	55.50	25.84	3.35	0.16	0.46
9	2	11.48	52.15	33.49	2.87	0.20	0.46
10	2	13.40	63.16	22.49	0.96	0.12	0.47
11	2	13.88	76.56	9.09	0.48	0.05	0.23
12	2	29.19	68.42	2.39	0.00	0.01	0.04
13	2	8.29	81.60	8.68	1.44	0.06	0.31
14	2	8.61	46.25	20.74	24.39	0.35	0.67
15	2	4.39	37.96	21.69	35.97	0.47	0.69
16	2	3.85	39.19	43.41	13.56	0.35	0.61
17	2	6.14	37.89	33.92	22.05	0.39	0.61
18	2	6.40	52.94	26.70	13.96	0.27	0.67
19	2	6.90	39.79	34.64	18.67	0.36	0.61
20	2	6.12	34.94	27.46	31.48	0.45	0.68
21	2	3.61	44.42	46.88	5.09	0.29	0.54
22	2	5.81	43.42	36.20	14.56	0.33	0.60
23	2	3.78	81.32	12.05	2.85	0.09	0.41
24	2	12.92	74.33	10.85	1.90	0.07	0.42


### Appendix J: Classical Item-Level Statistics



# **Appendix K: Scree Plots**

Figure K.1. Scree Plot—Mathematics Grade 3

Figure K.2. Scree Plot—Mathematics Grade 4



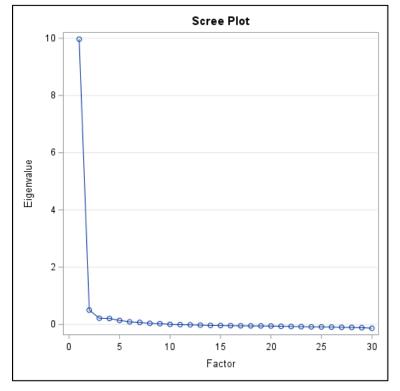
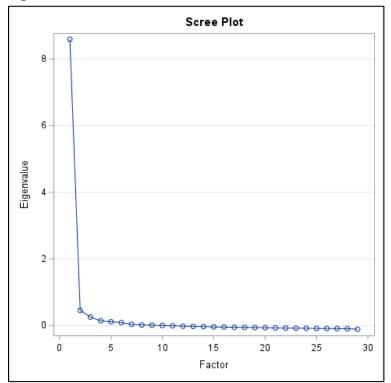




Figure K.3. Scree Plot—Mathematics Grade 5

### Figure K.4. Scree Plot—Mathematics Grade 6



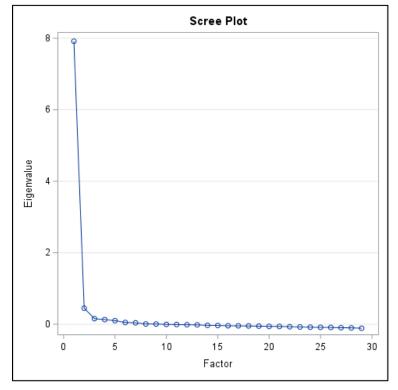



Figure K.5. Scree Plot—Mathematics Grade 7

#### Figure K.6. Scree Plot—Mathematics Grade 8

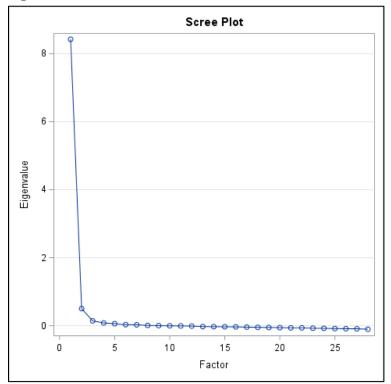



Figure K.7. Scree Plot—ELA Grade 3

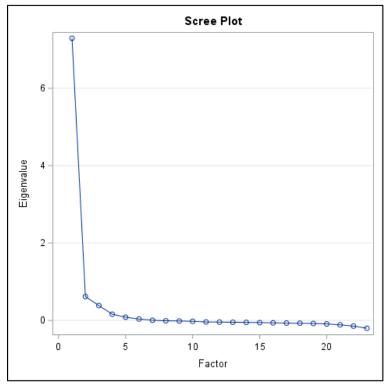



Figure K.8. Scree Plot—ELA Grade 4

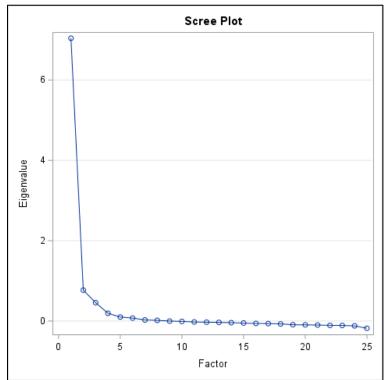



Figure K.9. Scree Plot—ELA Grade 5

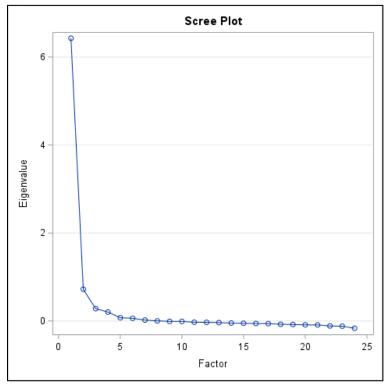
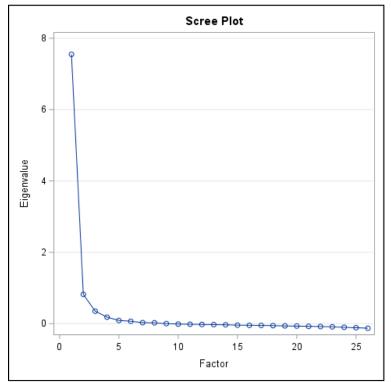




Figure K.10. Scree Plot—ELA Grade 6



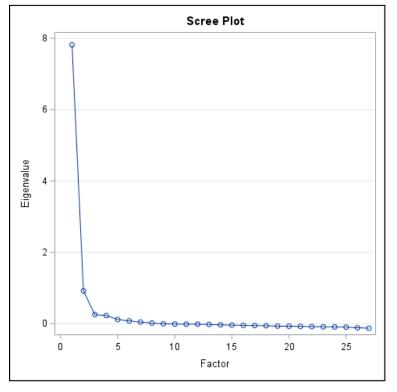
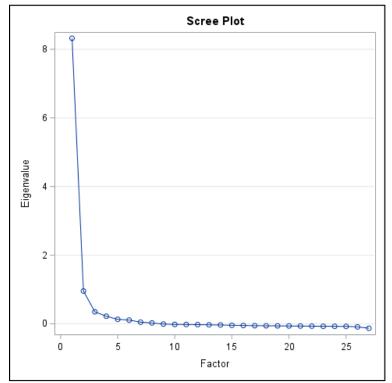




Figure K.11. Scree Plot—ELA Grade 7

#### Figure K.12. Scree Plot—ELA Grade 8



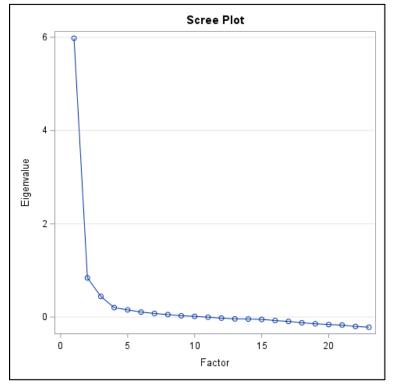
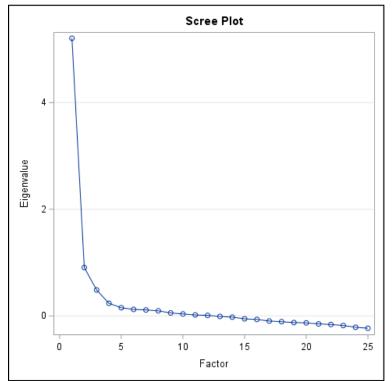




Figure K.13. Scree Plot—CSLA Grade 3

#### Figure K.14. Scree Plot—CSLA Grade 4



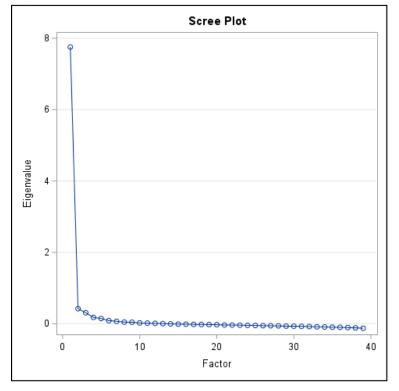
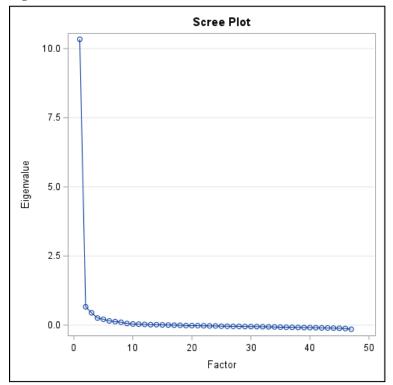




Figure K.15. Scree Plot—Science Grade 5

#### Figure K.16. Scree Plot—Science Grade 8



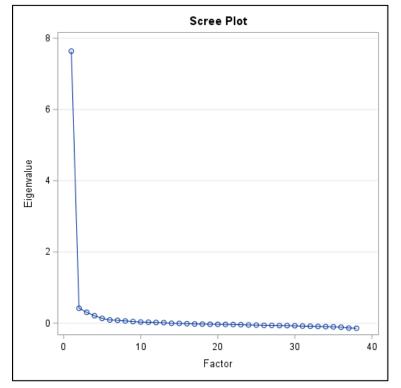
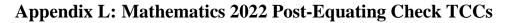




Figure K.17. Scree Plot—Science Grade 11



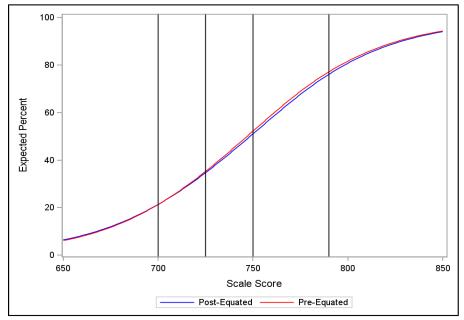
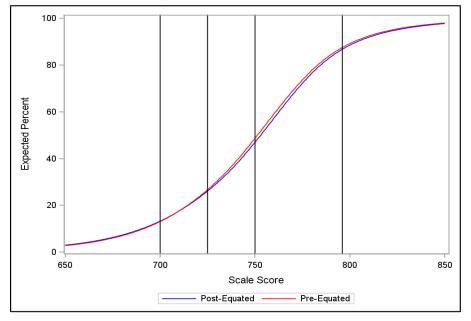




Figure L.1. 2022 Post-Equating Check TCCs—Mathematics Grade 3





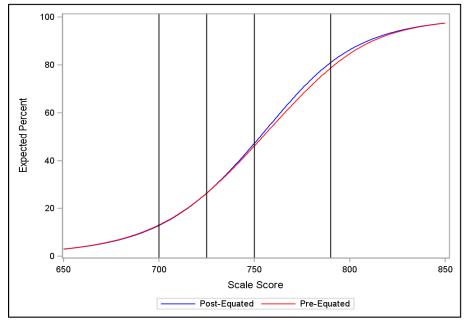
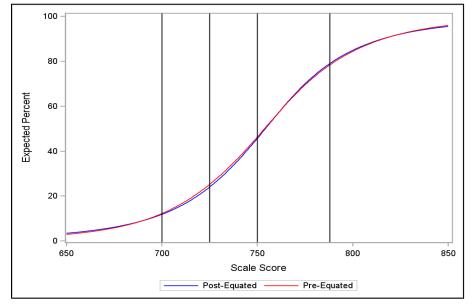




Figure L.3. 2022 Post-Equating Check TCCs—Mathematics Grade 5





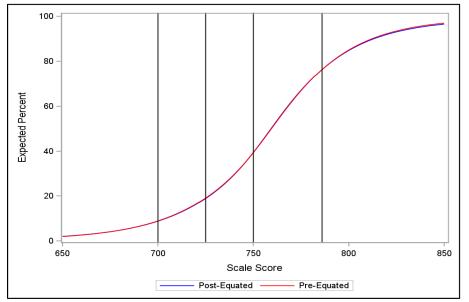
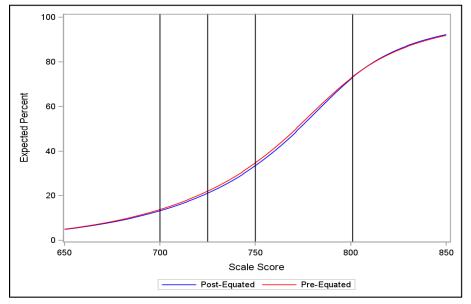




Figure L.5. 2022 Post-Equating Check TCCs—Mathematics Grade 7

Figure L.6. 2022 Post-Equating Check TCCs—Mathematics Grade 8



## **Appendix M: IRT Item-Level Statistics**

Item	Item Type	Model	А	В	D1	D2	D3	D4	D5	Misfit Flag
1	CR	GPC	0.695	2.497	0	2.378	-0.248	-2.130	_	No
2	CR	GPC	0.783	2.430	0	2.190	-0.173	-2.017	_	No
3	CR	GPC	0.674	2.748	0	2.618	-0.259	-2.360	_	No
4	CR	GPC	0.739	2.601	0	2.360	0.620	-2.980	_	No
5	XI	GPC	0.379	-0.062	0	-0.136	0.136	_	_	Yes
6	XI	GPC	0.439	0.601	0	-2.121	2.121	_	_	Yes
7	XI	GPC	0.479	0.184	0	-0.978	0.978	_	_	Yes
8	XI	GPC	0.722	0.258	0	-0.080	0.080	_	_	Yes
9	XI	GPC	0.893	-1.172	0	0.317	-0.317	_	_	Yes
10	XI	GPC	0.639	-1.478	0	0.413	-0.413	_	_	Yes
11	XI	GPC	0.497	-0.173	0	-0.558	0.558	_	_	No
12	XI	GPC	0.469	-0.307	0	-0.887	0.887	_	_	No
13	XI	GPC	0.355	-0.369	0	-1.668	1.668	_	_	Yes
14	XI	GPC	0.393	-0.389	0	-1.634	1.634	_	_	Yes
15	XI	GPC	0.403	0.294	0	-1.554	1.554	_	_	Yes
16	XI	GPC	0.513	0.201	0	0.952	-0.952	_	_	Yes
17	XI	GPC	0.715	0.061	0	1.264	-1.264	_	_	No
18	XI	GPC	0.526	1.345	0	0.998	-0.998	_	_	No
19	XI	GPC	0.453	-0.281	0	-0.913	0.913	_	_	Yes
20	XI	GPC	0.384	-0.468	0	-1.203	1.203	_	_	Yes
21	XI	GPC	0.712	-0.135	0	0.051	-0.051	_	-	No
22	XI	GPC	0.573	-0.144	0	0.407	-0.407	_	-	No
23	XI	GPC	0.368	1.714	0	1.034	-1.034	-	_	Yes

 Table M.1. Operational Item Parameter Estimates—ELA Grade 3

	1									
Item	Item Type	Model	А	В	D1	D2	D3	D4	D5	Misfit Flag
1	CR	GPC	0.748	1.272	0	1.393	-0.187	-1.207	_	No
2	CR	GPC	0.752	0.767	0	1.704	-0.095	-1.609	_	Yes
3	CR	GPC	0.757	1.669	0	1.692	-0.419	-1.273	_	No
4	CR	GPC	0.806	2.004	0	2.531	0.013	-1.058	-1.486	Yes
5	XI	GPC	0.216	0.989	0	-3.277	3.277	_	_	Yes
6	XI	GPC	0.431	0.030	0	-1.595	1.595	_	_	Yes
7	XI	GPC	0.313	0.631	0	0.456	-0.456	_	_	No
8	XI	GPC	0.768	-0.561	0	0.295	-0.295	_	_	No
9	XI	GPC	0.396	0.488	0	-1.779	1.779	_	_	Yes
10	XI	GPC	0.290	0.657	0	-1.815	1.815	_	_	Yes
11	XI	GPC	0.451	1.298	0	0.064	-0.064	_	_	No
12	XI	GPC	0.513	1.007	0	0.103	-0.103	_	_	Yes
13	XI	GPC	0.209	0.820	0	-2.357	2.357	_	_	Yes
14	XI	GPC	0.232	0.485	0	-0.262	0.262	_	_	Yes
15	XI	GPC	0.341	0.623	0	-1.253	1.253	_	_	Yes
16	XI	GPC	0.381	0.248	0	0.441	-0.441	_	_	No
17	XI	GPC	0.605	-1.183	0	0.355	-0.355	_	_	Yes
18	XI	GPC	0.534	0.270	0	-2.752	2.752	_	_	Yes
19	XI	GPC	0.297	1.390	0	-0.315	0.315	_	_	Yes
20	XI	GPC	0.534	0.146	0	-1.522	1.522	_	_	Yes
21	XI	GPC	0.580	-0.491	0	0.200	-0.200	_	_	No
22	XI	GPC	0.332	-0.752	0	-0.310	0.310	_	_	Yes
23	XI	GPC	0.355	-1.194	0	-3.161	3.161	_	_	Yes
24	XI	GPC	0.802	0.024	0	0.043	-0.043	_	_	Yes
25	XI	GPC	0.905	-0.752	0	0.711	-0.711	_	_	No

 Table M.2. Operational Item Parameter Estimates—ELA Grade 4

	<b>I</b>									
Item	Item Type	Model	А	В	D1	D2	D3	D4	D5	Misfit Flag
1	CR	GPC	0.814	1.297	0	1.316	0.033	-1.348	_	Yes
2	CR	GPC	0.792	0.785	0	1.429	0.289	-1.718	_	Yes
3	CR	GPC	0.745	1.871	0	1.553	-0.340	-1.213	_	Yes
4	CR	GPC	0.775	2.276	0	1.942	0.198	-0.821	-1.319	Yes
5	XI	GPC	0.576	-0.873	0	-1.434	1.434	_	_	Yes
6	XI	GPC	0.531	-0.130	0	-0.454	0.454	_	_	Yes
7	XI	GPC	0.438	0.352	0	-0.854	0.854	_	_	Yes
8	XI	GPC	0.436	0.335	0	-0.053	0.053	_	_	No
9	XI	GPC	0.350	1.545	0	-1.421	1.421	_	_	Yes
10	XI	GPC	0.890	-0.227	0	0.013	-0.013	_	_	Yes
11	XI	GPC	0.707	-0.018	0	-0.528	0.528	_	_	Yes
12	XI	GPC	0.388	0.111	0	-0.738	0.738	_	_	Yes
13	XI	GPC	0.519	0.607	0	1.130	-1.130	_	_	No
14	XI	GPC	0.274	1.653	0	0.287	-0.287	_	_	Yes
15	XI	GPC	0.384	0.333	0	-0.197	0.197	_	_	Yes
16	XI	GPC	0.330	1.324	0	-0.947	0.947	_	_	Yes
17	XI	GPC	0.237	1.774	0	1.358	-1.358	_	_	Yes
18	XI	GPC	0.181	0.040	0	-2.715	2.715	_	_	No
19	XI	GPC	0.429	0.239	0	2.077	-2.077	_	_	Yes
20	XI	GPC	0.256	2.306	0	-1.771	1.771	_	_	No
21	XI	GPC	0.630	0.253	0	1.003	-1.003	_	_	Yes
22	XI	GPC	0.378	0.404	0	0.844	-0.844	_	_	No
23	XI	GPC	0.349	1.037	0	-0.168	0.168	_	_	Yes
24	XI	GPC	0.471	0.628	0	1.094	-1.094	_	_	No

 Table M.3. Operational Item Parameter Estimates—ELA Grade 5

Itom	Item Type	Model	Α	В	D1	D2	D3	D4	D5	Misfit Flag
Item										
1	CR	GPC	0.833	1.274	0	1.010	0.015	-1.025	-	Yes
2	CR	GPC	0.829	1.709	0	1.689	0.409	-0.788	-1.310	Yes
3	CR	GPC	0.825	1.230	0	1.406	-0.119	-1.288	_	Yes
4	CR	GPC	0.817	1.967	0	2.274	0.627	-0.602	-2.299	Yes
5	XI	GPC	0.303	-0.408	0	-2.483	2.483	_	_	Yes
6	XI	GPC	0.642	0.516	0	0.117	-0.117	_	_	No
7	XI	GPC	0.283	1.000	0	-1.840	1.840	_	_	Yes
8	XI	GPC	0.391	0.697	0	-0.907	0.907	_	_	Yes
9	XI	GPC	0.553	-0.716	0	0.495	-0.495	_	_	Yes
10	XI	GPC	0.390	-0.331	0	1.127	-1.127	_	_	Yes
11	XI	GPC	0.449	0.565	0	-1.128	1.128	_	_	No
12	XI	GPC	0.631	0.236	0	0.196	-0.196	_	_	Yes
13	XI	GPC	0.433	0.307	0	-1.274	1.274	_	_	No
14	XI	GPC	0.594	0.226	0	-0.754	0.754	_	_	Yes
15	XI	GPC	0.404	0.825	0	0.660	-0.660	_	_	No
16	XI	GPC	0.257	1.241	0	-1.306	1.306	_	_	Yes
17	XI	GPC	0.262	0.681	0	-0.728	0.728	_	_	Yes
18	XI	GPC	0.283	0.883	0	1.309	-1.309	_	_	Yes
19	XI	GPC	0.439	-0.052	0	-1.130	1.130	_	_	Yes
20	XI	GPC	0.493	0.637	0	0.323	-0.323	_	_	No
21	XI	GPC	0.479	0.120	0	-0.956	0.956	_	_	No
22	XI	GPC	0.446	-0.136	0	-1.137	1.137	_	_	Yes
23	XI	GPC	0.375	0.969	0	-0.277	0.277	_	_	Yes
24	XI	GPC	0.344	1.717	0	1.549	-1.549	_	_	No
25	XI	GPC	0.480	0.031	0	1.226	-1.226	_	_	No
26	XI	GPC	0.450	-0.491	0	-1.161	1.161	_	_	No
		0.0	0.100	0.171	v	1.101	1.101			110

 Table M.4. Operational Item Parameter Estimates—ELA Grade 6

1 4010 1		Operational Item Farameter Estimates EEA Orac								
Item	Item Type	Model	А	В	D1	D2	D3	D4	D5	Misfit Flag
1	CR	GPC	0.752	0.615	0	0.674	0.146	-0.820	_	Yes
2	CR	GPC	0.704	1.055	0	1.406	0.657	-0.492	-1.571	Yes
3	CR	GPC	0.878	0.924	0	1.139	0.012	-1.151	_	Yes
4	CR	GPC	0.885	1.236	0	1.934	0.582	-0.808	-1.708	Yes
5	XI	GPC	0.303	0.678	0	-1.923	1.923	_	_	Yes
6	XI	GPC	0.612	0.765	0	0.621	-0.621	_	_	Yes
7	XI	GPC	0.413	1.393	0	-1.971	1.971	_	_	Yes
8	XI	GPC	0.502	0.091	0	-0.875	0.875	_	_	Yes
9	XI	GPC	0.255	1.548	0	-1.398	1.398	_	_	Yes
10	XI	GPC	0.468	2.620	0	1.173	-1.173	_	_	No
11	XI	GPC	0.425	0.698	0	0.249	-0.249	_	_	Yes
12	XI	GPC	0.431	0.764	0	-1.296	1.296	_	_	Yes
13	XI	GPC	0.626	1.284	0	0.590	-0.590	_	_	No
14	XI	GPC	0.560	0.438	0	0.351	-0.351	_	_	No
15	XI	GPC	0.370	1.535	0	-0.334	0.334	_	_	No
16	XI	GPC	0.291	-0.151	0	-1.953	1.953	_	_	No
17	XI	GPC	0.383	0.594	0	0.614	-0.614	_	_	No
18	XI	GPC	0.573	-0.274	0	-0.464	0.464	_	_	Yes
19	XI	GPC	0.351	0.805	0	-3.614	3.614	_	_	Yes
20	XI	GPC	0.220	1.608	0	-2.742	2.742	_	_	Yes
21	XI	GPC	0.519	0.843	0	0.625	-0.625	_	_	No
22	XI	GPC	0.438	0.061	0	-0.744	0.744	_	_	Yes
23	XI	GPC	0.561	0.066	0	-0.441	0.441	_	_	Yes
24	XI	GPC	0.451	0.611	0	2.100	-2.100	_	_	Yes
25	XI	GPC	0.708	-0.147	0	0.402	-0.402	_	_	Yes
26	XI	GPC	0.758	-0.301	0	0.683	-0.683	_	_	Yes
27	XI	GPC	0.446	0.508	0	-0.086	0.086	_	_	Yes

 Table M.5. Operational Item Parameter Estimates—ELA Grade 7

	no. Operano									
Item	Item Type	Model	Α	В	D1	D2	D3	D4	D5	Misfit Flag
1	CR	GPC	0.756	0.467	0	0.811	0.201	-1.012	_	No
2	CR	GPC	0.741	1.101	0	1.495	0.822	-0.498	-1.819	Yes
3	CR	GPC	0.765	0.383	0	0.784	0.337	-1.121	_	No
4	CR	GPC	0.802	0.901	0	1.434	0.916	-0.597	-1.753	Yes
5	XI	GPC	0.542	-0.619	0	-1.311	1.311	_	_	Yes
6	XI	GPC	0.442	-0.057	0	-0.333	0.333	_	_	No
7	XI	GPC	0.208	2.859	0	1.320	-1.320	_	_	Yes
8	XI	GPC	0.583	-0.488	0	-0.561	0.561	_	_	No
9	XI	GPC	0.368	-1.329	0	-0.593	0.593	_	_	No
10	XI	GPC	0.499	-0.383	0	0.941	-0.941	_	_	Yes
11	XI	GPC	0.284	1.612	0	-0.605	0.605	_	_	Yes
12	XI	GPC	0.395	-0.954	0	0.929	-0.929	_	_	Yes
13	XI	GPC	0.558	0.091	0	0.077	-0.077	_	_	Yes
14	XI	GPC	0.395	0.857	0	-1.831	1.831	_	_	Yes
15	XI	GPC	0.391	0.885	0	0.467	-0.467	_	-	No
16	XI	GPC	0.897	-0.239	0	0.818	-0.818	_	_	No
17	XI	GPC	0.487	-0.056	0	-0.288	0.288	_	_	No
18	XI	GPC	0.415	0.263	0	0.446	-0.446	_	_	Yes
19	XI	GPC	0.444	0.461	0	1.424	-1.424	_	_	No
20	XI	GPC	0.364	0.683	0	-2.005	2.005	_	-	Yes
21	XI	GPC	0.325	0.288	0	-3.241	3.241	_	_	No
22	XI	GPC	0.509	-0.322	0	-1.068	1.068	_	_	Yes
23	XI	GPC	0.469	0.034	0	-1.023	1.023	_	_	No
24	XI	GPC	0.443	0.643	0	0.852	-0.852	_	_	No
25	XI	GPC	0.427	-0.414	0	-1.826	1.826	_	_	Yes
26	XI	GPC	0.370	0.182	0	0.838	-0.838	_	_	Yes
27	XI	GPC	0.369	1.420	0	-0.545	0.545	_	_	No

 Table M.6. Operational Item Parameter Estimates—ELA Grade 8

Item Item Type 1 CR	Model	В	D1	DJ	<b>D</b> 2		<b>x</b> 01	
1 CR				D2	D3	D4	Infit	Outfit
	Rasch	0.054	0	-0.904	0.694	0.210	0.88	0.85
2 CR	Rasch	0.377	0	-0.937	0.115	0.821	0.76	0.71
3 CR	Rasch	0.182	0	-0.880	0.688	0.192	1.02	0.97
4 CR	Rasch	0.480	0	-0.345	-0.300	0.645	0.93	0.87
5 XI	Rasch	-0.192	0	-1.290	1.290	-	0.80	0.80
6 XI	Rasch	-0.290	0	0.577	-0.577	_	1.07	1.23
7 XI	Rasch	-0.755	0	-0.773	0.773	-	1.04	1.06
8 XI	Rasch	-0.653	0	0.156	-0.156	_	0.96	0.95
9 XI	Rasch	-0.287	0	0.339	-0.339	_	1.03	1.07
10 XI	Rasch	-0.295	0	0.767	-0.767	-	0.92	0.92
11 XI	Rasch	0.119	0	0.204	-0.204	_	1.14	1.22
12 XI	Rasch	-0.081	0	1.273	-1.273	-	1.09	1.17
13 XI	Rasch	0.272	0	0.121	-0.121	_	0.99	1.01
14 XI	Rasch	0.891	0	-0.171	0.171	-	1.26	1.64
15 XI	Rasch	-0.706	0	0.436	-0.436	-	0.85	0.81
16 XI	Rasch	-0.105	0	0.276	-0.276	_	0.92	0.89
17 XI	Rasch	0.450	0	-0.180	0.180	_	1.30	1.53
18 XI	Rasch	-0.329	0	0.788	-0.788	_	0.90	0.93
19 XI	Rasch	-0.712	0	-0.090	0.090	_	0.90	0.88
20 XI	Rasch	0.157	0	-0.022	0.022	_	1.13	1.18
21 XI	Rasch	-0.062	0	0.539	-0.539	_	1.30	1.48

Table M.7. Operational Item Parameter Estimates—CSLA Grade 3

I uble h	noi operan	Juli Item	I al allie		unnaves	COLII C	induc i			
Item	Item Type	Model	В	D1	D2	D3	D4	D5	Infit	Outfit
1	CR	Rasch	-0.605	0	-0.812	0.608	0.204	-	1.03	1.01
2	CR	Rasch	0.069	0	0.133	-0.881	0.748	_	0.94	0.94
3	CR	Rasch	-0.227	0	-0.754	0.613	0.142	_	1.01	1.00
4	CR	Rasch	0.302	0	-0.722	-0.349	0.012	1.059	0.83	0.77
5	XI	Rasch	-1.251	0	-0.197	0.197	_	_	0.89	0.86
6	XI	Rasch	-0.496	0	-0.650	0.650	_	_	1.12	1.13
7	XI	Rasch	-0.162	0	0.908	-0.908	_	_	1.05	1.07
8	XI	Rasch	-1.167	0	0.668	-0.668	_	_	1.07	1.10
9	XI	Rasch	-1.463	0	-0.205	0.205	_	_	0.86	0.85
10	XI	Rasch	0.792	0	-0.786	0.786	_	_	0.89	0.87
11	XI	Rasch	-0.991	0	0.699	-0.699	_	_	0.88	0.89
12	XI	Rasch	-0.149	0	0.836	-0.836	_	_	0.91	0.84
13	XI	Rasch	-1.225	0	0.582	-0.582	_	_	0.83	0.78
14	XI	Rasch	-0.906	0	0.911	-0.911	_	_	0.84	0.82
15	XI	Rasch	-0.626	0	0.399	-0.399	_	_	1.01	1.05
16	XI	Rasch	0.090	0	0.704	-0.704	_	_	1.02	1.15
17	XI	Rasch	1.102	0	-0.997	0.997	_	_	1.08	1.19
18	XI	Rasch	0.261	0	-0.260	0.260	_	_	1.16	1.30
19	XI	Rasch	-0.250	0	-0.523	0.523	_	_	0.97	0.96
20	XI	Rasch	0.248	0	0.811	-0.811	_	_	1.08	1.51
21	XI	Rasch	-0.006	0	1.434	-1.434	_	_	0.99	1.07
22	XI	Rasch	-0.320	0	0.227	-0.227	_	_	0.95	0.95
23	XI	Rasch	0.446	0	0.435	-0.435	_	_	1.24	1.83
24	XI	Rasch	0.807	0	0.011	-0.011	_	-	1.19	1.80
25	SR	Rasch	-0.197	0	-0.162	0.162	_	-	0.90	0.86

Table M.8. Operational Item Parameter Estimates—CSLA Grade 4

	1.9. Operatio	1							
Item	Item Type	Model	Α	В	С	D1	D2	D3	Misfit Flag
1	CR	GPC	0.789	0.752	—	0	0.127	-0.127	Yes
2	CR	GPC	0.443	0.964	—	0	-0.279	0.279	Yes
3	CR	GPC	0.494	2.175	_	0	0.153	-0.153	No
4	CR	GPC	0.504	1.055	_	0	0.432	-0.432	Yes
5	CR	GPC	0.533	-0.291	_	0	-0.837	0.837	Yes
6	CR	GPC	0.674	0.827	_	0	0.826	-0.826	No
7	CR	GPC	0.649	1.378	_	0	0.094	-0.094	No
8	CR	GPC	0.919	0.273	_	0	0.365	-0.365	Yes
9	CR	GPC	0.715	-0.025	_	0	-0.197	0.197	Yes
10	CR	GPC	0.678	0.800	_	0	-0.191	0.191	Yes
11	CR	GPC	0.606	0.328	_	0	-0.417	0.417	Yes
12	CR	GPC	0.850	-0.391	_	0	0.672	-0.672	Yes
13	XI	3PL	1.306	-0.169	0.088	_	_	_	Yes
14	XI	3PL	0.694	0.845	0.144	_	_	_	No
15	XI	3PL	1.137	0.267	0.028	_	_	_	No
16	XI	3PL	0.505	1.733	0.009	-	_	_	No
17	XI	3PL	1.301	1.489	0.128	_	_	_	No
18	XI	3PL	0.508	0.577	0.182	_	_	_	No
19	XI	3PL	0.768	0.104	0.118	_	_	_	Yes
20	XI	3PL	1.969	1.511	0.076	_	_	_	Yes
21	XI	3PL	0.662	0.443	0.013	_	_	_	Yes
22	XI	3PL	1.049	0.914	0.006	_	_	_	Yes
23	XI	3PL	0.420	1.134	0.119	_	_	_	Yes
24	XI	3PL	1.239	0.615	0.023	_	_	_	No
25	XI	3PL	0.942	0.536	0.022	_	_	_	No
26	XI	3PL	1.092	1.003	0.098	_	_	_	Yes
27	SR	3PL	1.101	-0.708	0.264	_	_	_	Yes
28	SR	3PL	0.746	2.025	0.273	_	_	_	No
29	SR	3PL	0.702	1.479	0.360	_	_	_	No
30	SR	3PL	0.991	1.840	0.248	_	_	_	No
31	SR	3PL	1.137	0.694	0.437	_	_	_	No
32	SR	3PL	0.730	1.648	0.179	_	_	_	Yes
33	SR	3PL	0.553	1.964	0.132	_	_	_	No
34	SR	3PL	1.210	0.860	0.394	_	_	_	No
35	SR	3PL	1.156	1.389	0.324	_	_	_	Yes
36	SR	3PL	0.420	-0.124	0.082	_	_	_	No
37	SR	3PL	1.029	0.233	0.242	_	_	_	Yes
38	SR	3PL	0.720	-0.564	0.170	_	_	_	Yes
39	SR	3PL	0.753	0.393	0.081	_	_	_	No
	I								·

 Table M.9. Operational Item Parameter Estimates—Science Grade 5

Table M	0								
Item	Item Type	Model	А	В	С	D1	D2	D3	Misfit Flag
1	CR	GPC	1.056	1.077	_	0	0.495	-0.495	Yes
2	CR	GPC	0.655	0.801	_	0	-0.063	0.063	Yes
3	CR	GPC	1.176	1.619	_	0	0.314	-0.314	Yes
4	CR	GPC	1.007	0.831	_	0	0.359	-0.359	Yes
5	CR	GPC	0.575	0.496	_	0	-0.025	0.025	Yes
6	CR	GPC	0.851	1.166	_	0	0.161	-0.161	Yes
7	CR	GPC	1.123	1.087	_	0	0.369	-0.369	Yes
8	CR	GPC	0.344	0.971	_	0	-0.896	0.896	Yes
9	CR	GPC	0.843	0.001	_	0	-0.089	0.089	Yes
10	CR	GPC	0.730	1.348	_	0	0.493	-0.493	Yes
11	CR	GPC	0.928	1.567	_	0	0.390	-0.390	Yes
12	CR	GPC	0.610	1.309	_	0	-0.769	0.769	Yes
13	CR	GPC	0.737	0.190	_	0	0.489	-0.489	Yes
14	CR	GPC	0.761	1.046	_	0	0.622	-0.622	Yes
15	XI	2PL	0.497	-0.098	_	_	_	_	Yes
16	XI	2PL	0.733	-0.776	_	_	_	_	Yes
17	XI	2PL	1.221	0.697	_	_	_	_	Yes
18	XI	2PL	0.548	0.257	_	_	_	_	Yes
19	XI	2PL	1.086	1.390	_	_	_	_	Yes
20	XI	2PL	0.485	2.531	_	_	_	_	Yes
21	XI	2PL	0.732	2.218	_	_	_	_	Yes
22	XI	3PL	0.608	1.203	0.040	_	_	_	No
23	XI	3PL	0.314	4.146	0.042	_	_	_	No
24	XI	3PL	0.605	-0.318	0.098	_	_	_	Yes
25	XI	3PL	0.937	0.904	0.044	_	_	_	Yes
26	XI	3PL	0.743	-0.316	0.058	_	_	_	Yes
27	XI	3PL	1.162	0.889	0.001	_	_	_	Yes
28	XI	3PL	0.775	1.069	0.094	_	_	_	Yes
29	XI	3PL	0.199	7.158	0.045	_	_	_	No
30	XI	3PL	0.830	0.731	0.105	_	_	_	Yes
31	XI	3PL	0.869	-0.146	0.164	_	_	_	No
32	XI	3PL	1.420	2.085	0.030	_	_	_	Yes
33	XI	3PL	1.710	1.667	0.100	_	_	_	Yes
34	XI	3PL	1.253	0.860	0.194	_	_	_	Yes
35	XI	3PL	1.014	-0.273	0.031	_	_	_	Yes
36	XI	3PL	0.774	0.550	0.006	_	_	_	Yes
37	XI	3PL	0.555	1.261	0.016	_	_	_	Yes
38	SR	3PL	1.277	0.669	0.329	_	_	_	Yes
39	SR	3PL	0.943	1.530	0.077	_	_	_	Yes
40	SR	3PL	0.672	1.577	0.428	_	_	_	Yes
41	SR	3PL	1.061	0.309	0.278	_	_	_	Yes
42	SR	3PL	1.246	0.289	0.115	_	_	_	Yes
43	SR	3PL	1.074	0.373	0.099	_	_	_	Yes
44	SR	3PL	1.347	0.462	0.400	_	_	_	Yes
45	SR	3PL	0.463	-1.247	0.019	_	_	_	Yes
46	SR	3PL	1.178	0.898	0.281	_	_	_	Yes
.0	SR	3PL	0.981	-0.945	0.019				Yes

 Table M.10. Operational Item Parameter Estimates—Science Grade 8

Item         Item Type         Model         A         B         C         D1         D2         D3         Misfit Flag           1         CR         GPC         0.559         2.854         -         0         0.066         -0.076         No           2         CR         GPC         0.765         0.571         -         0         -0.042         0.042         Yes           3         CR         GPC         0.792         0.691         -         0         0.438         -0.437         Yes           4         CR         GPC         0.792         0.691         -         0         0.438         -0.438         Yes           5         CR         GPC         0.711         0.613         -         0         0.506         -0.506         Yes           6         CR         GPC         0.715         1.290         -         0         0.133         -1.313         No           10         CR         GPC         0.745         2.224         -         0         0.281         -0.281         Yes           11         CR         GPC         0.785         2.234         -         0         0.281         -	Table M.11. Operational item Parameter Estimates—Science Grade 11									-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Item	Item Type	Model	А	В	С	D1	D2	D3	Misfit Flag
3CRGPC $0.835$ $0.129$ $ 0$ $-0.042$ $0.042$ Yes4CRGPC $0.792$ $0.691$ $ 0$ $0.847$ $-0.847$ Yes5CRGPC $0.680$ $0.481$ $ 0$ $0.438$ $-0.438$ Yes6CRGPC $0.963$ $0.870$ $ 0$ $0.360$ $-0.360$ Yes7CRGPC $0.711$ $0.613$ $ 0$ $0.189$ $-0.189$ Yes9CRGPC $0.711$ $0.715$ $1.290$ $ 0$ $1.313$ $-1.313$ No10CRGPC $0.714$ $0.790$ $ 0$ $0.628$ $-0.628$ Yes11CRGPC $0.714$ $0.790$ $ 0$ $0.135$ $-0.135$ No12CRGPC $0.715$ $1.290$ $ 0$ $0.281$ $-0.281$ Yes13XI2PL $0.857$ $1.395$ $   -$ No14XI2PL $0.699$ $1.054$ $   -$ Yes15XI3PL $0.315$ $0.846$ $0.020$ $  -$ No18XI3PL $1.202$ $-0.662$ $0.140$ $ -$ No20XI3PL $1.239$ $0.145$ $  -$ No21XI3PL $1.239$ $0.666$ $0.$	1	CR	GPC	0.559	2.854	_	0	0.066	-0.066	No
4CRGPC $0.792$ $0.691$ $ 0$ $0.847$ $-0.847$ Yes5CRGPC $0.680$ $0.481$ $ 0$ $0.438$ $-0.438$ Yes6CRGPC $0.963$ $0.870$ $ 0$ $0.360$ $-0.360$ Yes7CRGPC $0.711$ $0.613$ $ 0$ $0.506$ $-0.506$ Yes8CRGPC $0.711$ $1.613$ $ 0$ $0.189$ $-0.189$ Yes9CRGPC $0.714$ $0.790$ $ 0$ $0.628$ $-0.628$ Yes10CRGPC $0.714$ $0.790$ $ 0$ $0.628$ $-0.281$ Yes11CRGPC $0.785$ $2.234$ $ 0$ $0.281$ $-0.281$ Yes13XI2PL $0.857$ $1.395$ $   -$ No14XI2PL $0.835$ $0.476$ $0.119$ $  -$ No13XI3PL $0.835$ $0.476$ $0.119$ $  -$ No14XI3PL $0.835$ $0.476$ $0.119$ $  -$ No15XI3PL $0.395$ $0.446$ $0.200$ $  -$ No18XI3PL $1.389$ $2.187$ $0.033$ $ -$ No20XI3PL $1.220$ $0.336$ $0.14$	2	CR	GPC	0.765	0.571	_	0	-0.076	0.076	Yes
5CRGPC $0.680$ $0.481$ $ 0$ $0.438$ $-0.438$ Yes6CRGPC $0.963$ $0.870$ $ 0$ $0.360$ $-0.360$ Yes7CRGPC $0.711$ $0.613$ $ 0$ $0.506$ $-0.506$ Yes8CRGPC $0.824$ $0.191$ $ 0$ $0.189$ $-0.189$ Yes9CRGPC $0.715$ $1.290$ $ 0$ $0.135$ $-0.189$ Yes11CRGPC $0.714$ $0.790$ $ 0$ $0.135$ $-0.281$ Yes13XI2PL $0.6857$ $1.395$ $   -$ No14XI2PL $0.699$ $1.054$ $   -$ Yes15XI3PL $0.835$ $0.476$ $0.119$ $ -$ Yes16XI3PL $0.835$ $0.476$ $0.119$ $ -$ Yes17XI3PL $0.315$ $0.846$ $0.020$ $  -$ No18XI3PL $1.202$ $-0.062$ $0.140$ $  -$ No20XI3PL $1.389$ $2.187$ $0.033$ $  -$ No21XI3PL $1.202$ $-0.662$ $0.140$ $  -$ No22XI3PL $1.234$ $0.066$ $0.127$ $-$ <t< td=""><td>3</td><td>CR</td><td>GPC</td><td>0.835</td><td>0.129</td><td>_</td><td>0</td><td>-0.042</td><td>0.042</td><td>Yes</td></t<>	3	CR	GPC	0.835	0.129	_	0	-0.042	0.042	Yes
6CRGPC $0.963$ $0.870$ $ 0$ $0.360$ $-0.360$ Yes7CRGPC $0.711$ $0.613$ $ 0$ $0.506$ $-0.506$ Yes8CRGPC $0.715$ $1.290$ $ 0$ $0.189$ $-0.189$ Yes9CRGPC $0.715$ $1.290$ $ 0$ $1.313$ $-1.313$ No10CRGPC $0.714$ $0.790$ $ 0$ $0.628$ $-0.281$ Yes11CRGPC $0.785$ $2.234$ $ 0$ $0.281$ $-0.281$ Yes13XI2PL $0.657$ $1.395$ $   -$ No14XI2PL $0.699$ $1.054$ $   -$ Yes15XI3PL $0.835$ $0.476$ $0.119$ $  -$ Yes16XI3PL $0.835$ $0.476$ $0.119$ $  -$ Yes18XI3PL $1.359$ $2.187$ $0.033$ $  -$ No20XI3PL $1.389$ $2.187$ $0.033$ $  -$ No21XI3PL $0.743$ $0.666$ $0.127$ $  -$ No22XI3PL $1.027$ $1.534$ $0.081$ $  -$ No23XI3PL $0.235$ $0.336$ $0.16$	4	CR	GPC	0.792	0.691	_	0	0.847	-0.847	Yes
7         CR         GPC         0.711         0.613         -         0         0.506         -0.506         Yes           8         CR         GPC         0.824         0.191         -         0         0.189         -0.189         Yes           9         CR         GPC         0.715         1.290         -         0         0.628         -0.628         Yes           10         CR         GPC         0.645         2.226         -         0         0.281         -0.281         Yes           11         CR         GPC         0.785         2.234         -         0         0.281         -0.281         Yes           13         XI         2PL         0.699         1.054         -         -         -         Yes           15         XI         3PL         0.835         0.476         0.119         -         -         Yes           16         XI         3PL         0.835         0.476         0.119         -         -         No           18         XI         3PL         0.315         0.846         0.020         -         -         No           20         XI	5	CR	GPC	0.680	0.481	_	0	0.438	-0.438	Yes
8         CR         GPC         0.824         0.191         -         0         0.189         -0.189         Yes           9         CR         GPC         0.715         1.290         -         0         1.313         -1.313         No           10         CR         GPC         0.714         0.790         -         0         0.628         -0.628         Yes           11         CR         GPC         0.785         2.234         -         0         0.281         -0.281         Yes           13         XI         2PL         0.857         1.395         -         -         -         -         No           14         XI         2PL         0.699         1.054         -         -         -         Yes           15         XI         3PL         0.835         0.476         0.119         -         -         Yes           16         XI         3PL         0.880         0.223         0.019         -         -         No           18         XI         3PL         1.389         2.187         0.033         -         -         No           20         XI         3PL	6	CR	GPC	0.963	0.870	_	0	0.360	-0.360	Yes
9         CR         GPC         0.715         1.290         -         0         1.313         -1.313         No           10         CR         GPC         0.714         0.790         -         0         0.628         -0.628         Yes           11         CR         GPC         0.645         2.226         -         0         0.135         -0.135         No           12         CR         GPC         0.785         2.234         -         0         0.281         -0.281         Yes           13         XI         2PL         0.857         1.395         -         -         -         -         No           14         XI         2PL         0.699         1.054         -         -         -         Yes           15         XI         3PL         0.835         0.476         0.119         -         -         Yes           16         XI         3PL         0.838         0.223         0.019         -         -         No           18         XI         3PL         1.389         2.187         0.033         -         -         No           20         XI         3PL	7	CR	GPC	0.711	0.613	_	0	0.506	-0.506	Yes
10         CR         GPC         0.714         0.790         -         0         0.628         -0.628         Yes           11         CR         GPC         0.645         2.226         -         0         0.135         -0.135         No           12         CR         GPC         0.785         2.234         -         0         0.281         -0.281         Yes           13         XI         2PL         0.699         1.054         -         -         -         -         No           14         XI         2PL         0.699         1.054         -         -         -         -         Yes           15         XI         3PL         0.835         0.476         0.119         -         -         -         Yes           16         XI         3PL         0.315         0.846         0.020         -         -         No           18         XI         3PL         1.389         2.187         0.033         -         -         No           20         XI         3PL         1.026         1.484         0.044         -         -         No           22         XI	8	CR	GPC	0.824	0.191	_	0	0.189	-0.189	Yes
11CRGPC $0.645$ $2.226$ $ 0$ $0.135$ $-0.135$ No12CRGPC $0.785$ $2.234$ $ 0$ $0.281$ $-0.281$ Yes13XI2PL $0.697$ $1.395$ $   -$ No14XI2PL $0.699$ $1.054$ $   -$ Yes15XI3PL $0.835$ $0.476$ $0.119$ $  -$ Yes16XI3PL $0.880$ $0.223$ $0.019$ $  -$ Yes17XI3PL $0.315$ $0.846$ $0.020$ $  -$ No18XI3PL $1.202$ $-0.062$ $0.140$ $  -$ No20XI3PL $1.389$ $2.187$ $0.033$ $  -$ No21XI3PL $1.436$ $-0.294$ $0.145$ $  -$ No22XI3PL $1.006$ $1.484$ $0.044$ $  -$ No23XI3PL $1.027$ $1.534$ $0.083$ $  -$ No24XI3PL $0.728$ $0.515$ $0.023$ $  -$ No25SR3PL $1.220$ $0.336$ $0.165$ $  -$ No26SR3PL $0.666$ $1.741$ $0.293$ $-$ <td>9</td> <td>CR</td> <td>GPC</td> <td>0.715</td> <td>1.290</td> <td>_</td> <td>0</td> <td>1.313</td> <td>-1.313</td> <td>No</td>	9	CR	GPC	0.715	1.290	_	0	1.313	-1.313	No
12       CR       GPC       0.785       2.234       -       0       0.281       -0.281       Yes         13       XI       2PL       0.657       1.395       -       -       -       -       No         14       XI       2PL       0.699       1.054       -       -       -       -       Yes         15       XI       3PL       0.835       0.476       0.119       -       -       -       Yes         16       XI       3PL       0.880       0.223       0.019       -       -       -       Yes         17       XI       3PL       0.315       0.846       0.020       -       -       -       No         18       XI       3PL       1.202       -0.062       0.140       -       -       -       No         20       XI       3PL       1.436       -0.294       0.145       -       -       No         21       XI       3PL       1.077       1.534       0.081       -       -       No         22       XI       3PL       1.027       1.534       0.081       -       -       No         23<	10	CR	GPC	0.714	0.790	_	0	0.628	-0.628	Yes
13XI2PL $0.857$ $1.395$ $                                                                                                                                                                   -$ <td>11</td> <td>CR</td> <td>GPC</td> <td>0.645</td> <td>2.226</td> <td>_</td> <td>0</td> <td>0.135</td> <td>-0.135</td> <td>No</td>	11	CR	GPC	0.645	2.226	_	0	0.135	-0.135	No
14       XI       2PL       0.699       1.054       -       -       -       -       Yes         15       XI       3PL       0.835       0.476       0.119       -       -       Yes         16       XI       3PL       0.880       0.223       0.019       -       -       Yes         17       XI       3PL       0.315       0.846       0.020       -       -       No         18       XI       3PL       1.202       -0.062       0.140       -       -       No         20       XI       3PL       1.389       2.187       0.033       -       -       No         21       XI       3PL       1.436       -0.294       0.145       -       -       No         22       XI       3PL       1.006       1.484       0.044       -       -       No         23       XI       3PL       1.027       1.534       0.081       -       -       No         24       XI       3PL       0.220       0.336       0.165       -       -       No         25       SR       3PL       0.728       0.515       0.023	12	CR	GPC	0.785	2.234	_	0	0.281	-0.281	Yes
15       XI       3PL       0.835       0.476       0.119       -       -       -       Yes         16       XI       3PL       0.880       0.223       0.019       -       -       -       Yes         17       XI       3PL       0.315       0.846       0.020       -       -       -       No         18       XI       3PL       1.202       -0.062       0.140       -       -       -       No         20       XI       3PL       1.389       2.187       0.033       -       -       No         20       XI       3PL       1.436       -0.294       0.145       -       -       No         21       XI       3PL       1.066       1.484       0.044       -       -       No         22       XI       3PL       1.027       1.534       0.081       -       -       No         23       XI       3PL       0.828       0.327       0.058       -       -       No         24       XI       3PL       0.728       0.515       0.023       -       -       No         25       SR       3PL <t< td=""><td>13</td><td>XI</td><td>2PL</td><td>0.857</td><td>1.395</td><td>_</td><td>_</td><td>_</td><td>_</td><td>No</td></t<>	13	XI	2PL	0.857	1.395	_	_	_	_	No
16       XI       3PL       0.880       0.223       0.019       -       -       -       Yes         17       XI       3PL       0.315       0.846       0.020       -       -       -       No         18       XI       3PL       1.202       -0.062       0.140       -       -       -       No         19       XI       3PL       1.389       2.187       0.033       -       -       No         20       XI       3PL       1.436       -0.294       0.145       -       -       No         21       XI       3PL       0.743       0.666       0.127       -       -       No         22       XI       3PL       1.006       1.484       0.044       -       -       No         23       XI       3PL       1.027       1.534       0.081       -       -       No         25       SR       3PL       1.220       0.336       0.165       -       -       No         25       SR       3PL       0.728       0.515       0.023       -       -       No         28       SR       3PL       0.911	14	XI	2PL	0.699	1.054	_	_	_	_	Yes
17       XI       3PL       0.315       0.846       0.020       -       -       -       No         18       XI       3PL       1.202       -0.062       0.140       -       -       -       Yes         19       XI       3PL       1.389       2.187       0.033       -       -       No         20       XI       3PL       1.436       -0.294       0.145       -       -       No         21       XI       3PL       0.743       0.666       0.127       -       -       No         22       XI       3PL       1.006       1.484       0.044       -       -       No         23       XI       3PL       1.027       1.534       0.081       -       -       No         24       XI       3PL       0.828       0.327       0.058       -       -       No         25       SR       3PL       1.220       0.336       0.165       -       -       Yes         26       SR       3PL       0.728       0.515       0.023       -       -       No         28       SR       3PL       0.535       0.940	15	XI	3PL	0.835	0.476	0.119	_	_	_	Yes
18XI3PL $1.202$ $-0.062$ $0.140$ $  -$ Yes19XI3PL $1.389$ $2.187$ $0.033$ $  -$ No20XI3PL $1.436$ $-0.294$ $0.145$ $  -$ No21XI3PL $0.743$ $0.666$ $0.127$ $  -$ No22XI3PL $1.006$ $1.484$ $0.044$ $  -$ No23XI3PL $1.027$ $1.534$ $0.081$ $  -$ No24XI3PL $0.828$ $0.327$ $0.058$ $  -$ No25SR3PL $1.220$ $0.336$ $0.165$ $  -$ Yes26SR3PL $0.728$ $0.515$ $0.023$ $  -$ No28SR3PL $0.911$ $0.383$ $0.184$ $  -$ Yes30SR3PL $0.660$ $0.449$ $0.183$ $  -$ No32SR3PL $0.660$ $0.449$ $0.183$ $  -$ Yes33SR3PL $0.984$ $0.723$ $0.221$ $  -$ Yes34SR3PL $0.496$ $0.069$ $0.164$ $  -$ Yes35SR3PL $0.984$ $0.723$ $0.221$ $-$ <td>16</td> <td>XI</td> <td>3PL</td> <td>0.880</td> <td>0.223</td> <td>0.019</td> <td>_</td> <td>_</td> <td>_</td> <td>Yes</td>	16	XI	3PL	0.880	0.223	0.019	_	_	_	Yes
19       XI       3PL       1.389       2.187       0.033       -       -       -       No         20       XI       3PL       1.436       -0.294       0.145       -       -       No         21       XI       3PL       0.743       0.666       0.127       -       -       No         22       XI       3PL       1.006       1.484       0.044       -       -       No         23       XI       3PL       1.027       1.534       0.081       -       -       No         24       XI       3PL       0.828       0.327       0.058       -       -       No         25       SR       3PL       1.220       0.336       0.165       -       -       Yes         26       SR       3PL       0.728       0.515       0.023       -       -       No         28       SR       3PL       0.911       0.383       0.184       -       -       Yes         30       SR       3PL       0.535       0.940       0.055       -       -       Yes         31       SR       3PL       0.660       0.449       0.183 </td <td>17</td> <td>XI</td> <td>3PL</td> <td>0.315</td> <td>0.846</td> <td>0.020</td> <td>_</td> <td>_</td> <td>_</td> <td>No</td>	17	XI	3PL	0.315	0.846	0.020	_	_	_	No
20       XI       3PL       1.436       -0.294       0.145       -       -       -       No         21       XI       3PL       0.743       0.666       0.127       -       -       No         22       XI       3PL       1.006       1.484       0.044       -       -       No         23       XI       3PL       1.027       1.534       0.081       -       -       No         24       XI       3PL       0.828       0.327       0.058       -       -       No         25       SR       3PL       1.220       0.336       0.165       -       -       No         26       SR       3PL       0.728       0.515       0.023       -       -       No         28       SR       3PL       0.911       0.383       0.184       -       -       Yes         30       SR       3PL       0.911       0.383       0.184       -       -       Yes         31       SR       3PL       0.655       0.940       0.055       -       -       No         32       SR       3PL       0.660       0.449       0.183 <td>18</td> <td>XI</td> <td>3PL</td> <td>1.202</td> <td>-0.062</td> <td>0.140</td> <td>_</td> <td>_</td> <td>_</td> <td>Yes</td>	18	XI	3PL	1.202	-0.062	0.140	_	_	_	Yes
21       XI       3PL       0.743       0.666       0.127       -       -       -       No         22       XI       3PL       1.006       1.484       0.044       -       -       No         23       XI       3PL       1.027       1.534       0.081       -       -       No         24       XI       3PL       0.828       0.327       0.058       -       -       No         25       SR       3PL       1.220       0.336       0.165       -       -       -       Yes         26       SR       3PL       0.728       0.515       0.023       -       -       No         28       SR       3PL       0.911       0.383       0.184       -       -       No         29       SR       3PL       0.535       0.940       0.055       -       -       Yes         30       SR       3PL       0.660       0.449       0.183       -       -       No         32       SR       3PL       0.660       0.449       0.183       -       -       No         32       SR       3PL       0.496       0.669	19	XI	3PL	1.389	2.187	0.033	_	_	_	No
22       XI       3PL       1.006       1.484       0.044       -       -       -       No         23       XI       3PL       1.027       1.534       0.081       -       -       -       Yes         24       XI       3PL       0.828       0.327       0.058       -       -       No         25       SR       3PL       1.220       0.336       0.165       -       -       -       Yes         26       SR       3PL       0.728       0.515       0.023       -       -       No         28       SR       3PL       0.728       0.515       0.023       -       -       No         28       SR       3PL       0.911       0.383       0.184       -       -       -       Yes         29       SR       3PL       0.535       0.940       0.055       -       -       -       Yes         30       SR       3PL       0.660       0.449       0.183       -       -       No         32       SR       3PL       0.660       0.449       0.183       -       -       Yes         33       SR <td< td=""><td>20</td><td>XI</td><td>3PL</td><td>1.436</td><td>-0.294</td><td>0.145</td><td>_</td><td>_</td><td>_</td><td>No</td></td<>	20	XI	3PL	1.436	-0.294	0.145	_	_	_	No
23       XI       3PL       1.027       1.534       0.081       -       -       -       Yes         24       XI       3PL       0.828       0.327       0.058       -       -       No         25       SR       3PL       1.220       0.336       0.165       -       -       -       Yes         26       SR       3PL       0.728       0.515       0.023       -       -       -       Yes         27       SR       3PL       0.806       1.741       0.293       -       -       No         28       SR       3PL       0.911       0.383       0.184       -       -       Yes         29       SR       3PL       0.535       0.940       0.055       -       -       Yes         30       SR       3PL       0.660       0.449       0.329       -       -       No         32       SR       3PL       0.660       0.449       0.183       -       -       Yes         33       SR       3PL       0.660       0.449       0.183       -       -       Yes         34       SR       3PL       0.496	21	XI	3PL	0.743	0.666	0.127	_	_	_	No
24       XI       3PL       0.828       0.327       0.058       -       -       -       No         25       SR       3PL       1.220       0.336       0.165       -       -       -       Yes         26       SR       3PL       0.728       0.515       0.023       -       -       -       Yes         27       SR       3PL       1.806       1.741       0.293       -       -       No         28       SR       3PL       0.911       0.383       0.184       -       -       -       Yes         29       SR       3PL       0.535       0.940       0.055       -       -       Yes         30       SR       3PL       0.845       -0.719       0.390       -       -       Yes         31       SR       3PL       0.660       0.449       0.183       -       -       No         32       SR       3PL       0.660       0.449       0.183       -       -       Yes         33       SR       3PL       0.756       2.055       0.180       -       -       Yes         34       SR       3PL	22	XI	3PL	1.006	1.484	0.044	_	_	_	No
25       SR       3PL       1.220       0.336       0.165       -       -       -       Yes         26       SR       3PL       0.728       0.515       0.023       -       -       -       Yes         27       SR       3PL       1.806       1.741       0.293       -       -       -       No         28       SR       3PL       0.911       0.383       0.184       -       -       -       Yes         29       SR       3PL       0.535       0.940       0.055       -       -       -       Yes         30       SR       3PL       0.845       -0.719       0.390       -       -       -       No         31       SR       3PL       0.660       0.449       0.183       -       -       -       No         32       SR       3PL       0.756       2.055       0.180       -       -       -       Yes         33       SR       3PL       0.496       0.069       0.164       -       -       -       Yes         34       SR       3PL       0.984       0.723       0.221       -       -       -<	23	XI	3PL	1.027	1.534	0.081	_	_	_	Yes
26       SR       3PL       0.728       0.515       0.023       -       -       -       Yes         27       SR       3PL       1.806       1.741       0.293       -       -       No         28       SR       3PL       0.911       0.383       0.184       -       -       -       Yes         29       SR       3PL       0.535       0.940       0.055       -       -       -       Yes         30       SR       3PL       0.845       -0.719       0.390       -       -       Yes         31       SR       3PL       1.065       1.449       0.329       -       -       No         32       SR       3PL       0.660       0.449       0.183       -       -       No         33       SR       3PL       0.756       2.055       0.180       -       -       Yes         34       SR       3PL       0.496       0.069       0.164       -       -       Yes         35       SR       3PL       0.901       1.188       0.236       -       -       No         37       SR       3PL       0.901	24	XI	3PL	0.828	0.327	0.058	_	_	_	No
27       SR       3PL       1.806       1.741       0.293       -       -       -       No         28       SR       3PL       0.911       0.383       0.184       -       -       -       Yes         29       SR       3PL       0.535       0.940       0.055       -       -       -       Yes         30       SR       3PL       0.845       -0.719       0.390       -       -       Yes         31       SR       3PL       1.065       1.449       0.329       -       -       No         32       SR       3PL       0.660       0.449       0.183       -       -       Yes         33       SR       3PL       0.756       2.055       0.180       -       -       Yes         34       SR       3PL       0.496       0.069       0.164       -       -       Yes         35       SR       3PL       0.994       0.723       0.221       -       -       Yes         36       SR       3PL       0.901       1.188       0.236       -       -       No         37       SR       3PL       1.234	25	SR	3PL	1.220	0.336	0.165	_	_	_	Yes
28       SR       3PL       0.911       0.383       0.184       -       -       -       Yes         29       SR       3PL       0.535       0.940       0.055       -       -       -       Yes         30       SR       3PL       0.845       -0.719       0.390       -       -       -       Yes         31       SR       3PL       1.065       1.449       0.329       -       -       No         32       SR       3PL       0.660       0.449       0.183       -       -       Yes         33       SR       3PL       0.660       0.449       0.183       -       -       Yes         34       SR       3PL       0.756       2.055       0.180       -       -       Yes         35       SR       3PL       0.496       0.069       0.164       -       -       Yes         36       SR       3PL       0.994       0.723       0.221       -       -       No         37       SR       3PL       0.901       1.188       0.236       -       -       No         37       SR       3PL       1.234	26	SR	3PL	0.728	0.515	0.023	_	_	_	Yes
29       SR       3PL       0.535       0.940       0.055       -       -       -       Yes         30       SR       3PL       0.845       -0.719       0.390       -       -       -       Yes         31       SR       3PL       1.065       1.449       0.329       -       -       -       No         32       SR       3PL       0.660       0.449       0.183       -       -       -       Yes         33       SR       3PL       0.756       2.055       0.180       -       -       Yes         34       SR       3PL       0.496       0.069       0.164       -       -       Yes         35       SR       3PL       0.994       0.723       0.221       -       -       Yes         36       SR       3PL       0.901       1.188       0.236       -       -       No         37       SR       3PL       1.234       2.206       0.363       -       -       Yes	27	SR	3PL	1.806	1.741	0.293	_	_	_	No
30       SR       3PL       0.845       -0.719       0.390       -       -       -       Yes         31       SR       3PL       1.065       1.449       0.329       -       -       -       No         32       SR       3PL       0.660       0.449       0.183       -       -       -       Yes         33       SR       3PL       0.756       2.055       0.180       -       -       Yes         34       SR       3PL       0.496       0.069       0.164       -       -       Yes         35       SR       3PL       0.984       0.723       0.221       -       -       Yes         36       SR       3PL       0.901       1.188       0.236       -       -       No         37       SR       3PL       1.234       2.206       0.363       -       -       Yes	28	SR	3PL	0.911	0.383	0.184	_	_	_	Yes
31       SR       3PL       1.065       1.449       0.329       -       -       -       No         32       SR       3PL       0.660       0.449       0.183       -       -       -       Yes         33       SR       3PL       0.756       2.055       0.180       -       -       -       Yes         34       SR       3PL       0.496       0.069       0.164       -       -       Yes         35       SR       3PL       0.984       0.723       0.221       -       -       Yes         36       SR       3PL       0.901       1.188       0.236       -       -       No         37       SR       3PL       1.234       2.206       0.363       -       -       Yes	29	SR	3PL	0.535	0.940	0.055	_	_	_	Yes
32       SR       3PL       0.660       0.449       0.183       -       -       -       Yes         33       SR       3PL       0.756       2.055       0.180       -       -       -       Yes         34       SR       3PL       0.496       0.069       0.164       -       -       Yes         35       SR       3PL       0.984       0.723       0.221       -       -       Yes         36       SR       3PL       0.901       1.188       0.236       -       -       No         37       SR       3PL       1.234       2.206       0.363       -       -       Yes	30	SR	3PL	0.845	-0.719	0.390	_	_	_	Yes
33       SR       3PL       0.756       2.055       0.180       -       -       -       Yes         34       SR       3PL       0.496       0.069       0.164       -       -       Yes         35       SR       3PL       0.984       0.723       0.221       -       -       Yes         36       SR       3PL       0.901       1.188       0.236       -       -       No         37       SR       3PL       1.234       2.206       0.363       -       -       Yes	31	SR	3PL	1.065	1.449	0.329	_	_	_	No
34         SR         3PL         0.496         0.069         0.164         -         -         -         Yes           35         SR         3PL         0.984         0.723         0.221         -         -         Yes           36         SR         3PL         0.901         1.188         0.236         -         -         No           37         SR         3PL         1.234         2.206         0.363         -         -         Yes	32	SR	3PL	0.660	0.449	0.183	_	_	_	Yes
35       SR       3PL       0.984       0.723       0.221       -       -       Yes         36       SR       3PL       0.901       1.188       0.236       -       -       No         37       SR       3PL       1.234       2.206       0.363       -       -       Yes	33	SR	3PL	0.756	2.055	0.180	_	_	_	Yes
36         SR         3PL         0.901         1.188         0.236         -         -         -         No           37         SR         3PL         1.234         2.206         0.363         -         -         -         Yes	34	SR	3PL	0.496	0.069	0.164	_	_	_	Yes
36         SR         3PL         0.901         1.188         0.236         -         -         -         No           37         SR         3PL         1.234         2.206         0.363         -         -         -         Yes	35	SR	3PL	0.984	0.723	0.221	_	_	_	Yes
	36	SR	3PL	0.901	1.188	0.236	_	_	_	No
38 SR 3PL 0.483 0.00 0.132 Yes	37	SR	3PL	1.234	2.206	0.363	_	_	_	Yes
	38	SR	3PL	0.483	0.00	0.132	_	_	_	Yes

 Table M.11. Operational Item Parameter Estimates—Science Grade 11

# Appendix N: TCC, TIC, and CSEM Curves

Figure N.1. Mathematics Grade 3 TCC

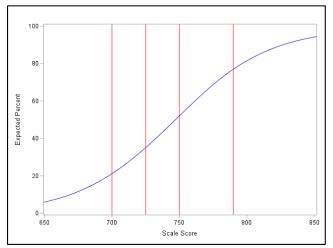



Figure N.2. Mathematics Grade 3 TIC

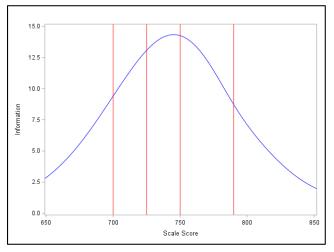



Figure N.3. Mathematics Grade 3 CSEM Curve

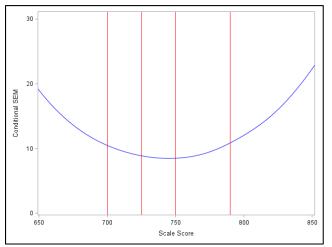



Figure N.4. Mathematics Grade 4 TCC

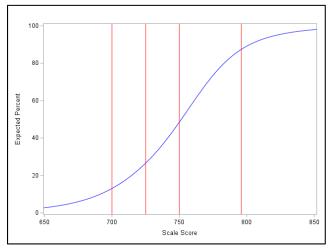



Figure N.5. Mathematics Grade 4 TIC

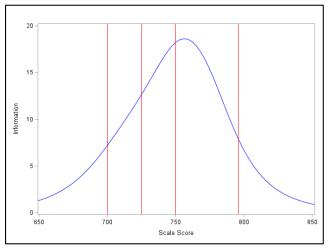



Figure N.6. Mathematics Grade 4 CSEM Curve

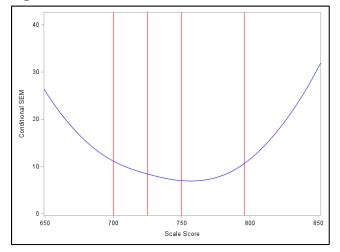



Figure N.7. Mathematics Grade 5 TCC

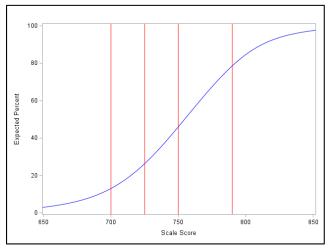



Figure N.8. Mathematics Grade 5 TIC

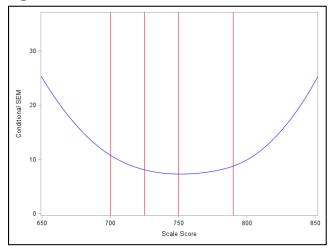



Figure N.9. Mathematics Grade 5 CSEM Curve

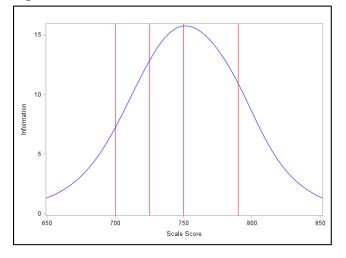



Figure N.10. Mathematics Grade 6 TCC

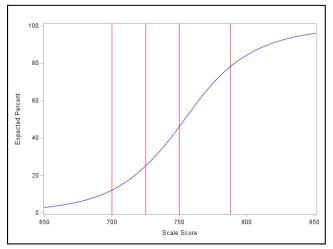



Figure N.11. Mathematics Grade 6 TIC

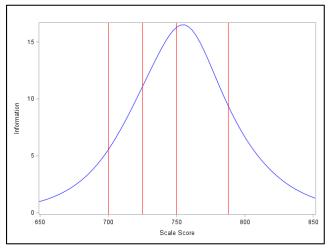



Figure N.12. Mathematics Grade 6 CSEM Curve

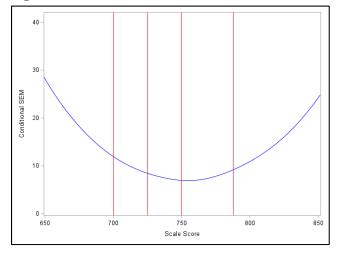



Figure N.13. Mathematics Grade 7 TCC

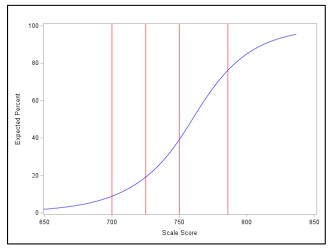



Figure N.14. Mathematics Grade 7 TIC

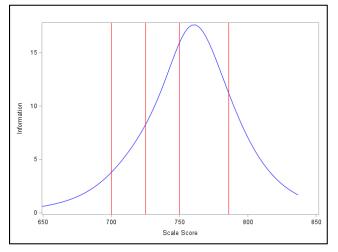



Figure N.15. Mathematics Grade 7 CSEM Curve

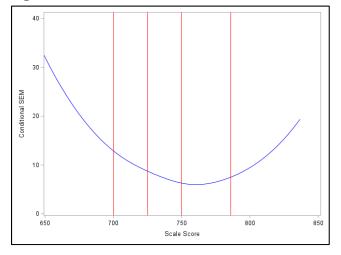



Figure N.16. Mathematics Grade 8 TCC

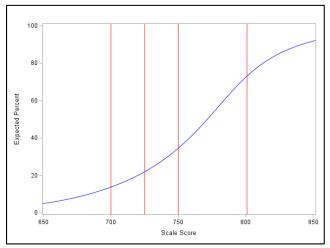



Figure N.17. Mathematics Grade 8 TIC

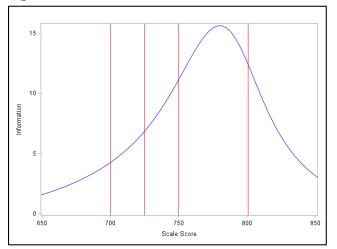



Figure N.18. Mathematics Grade 8 CSEM Curve

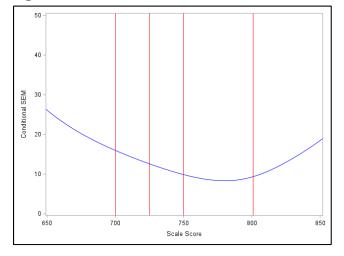



Figure N.19. ELA Grade 3 TCC



Figure N.20. ELA Grade 3 TIC

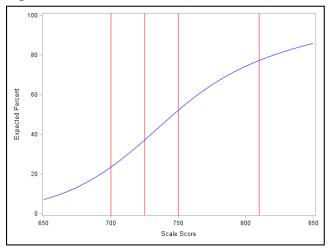



Figure N.21. ELA Grade 3 CSEM Curve

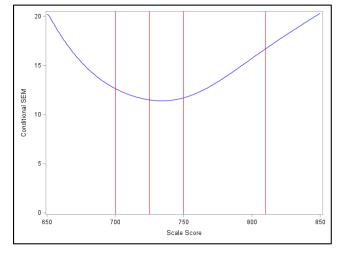



Figure N.22. ELA Grade 4 TCC

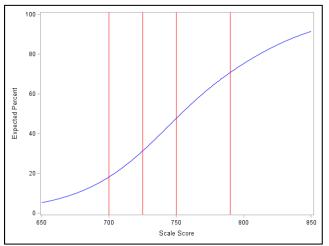



Figure N.23. ELA Grade 4 TIC

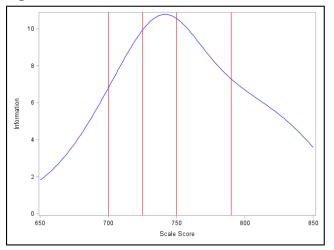



Figure N.24. ELA Grade 4 CSEM Curve

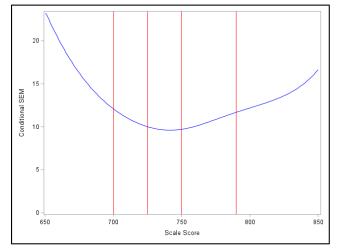



Figure N.25. ELA Grade 5 TCC

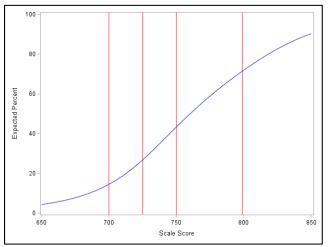



Figure N.26. ELA Grade 5 TIC

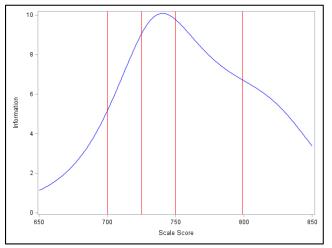



Figure N.27. ELA Grade 5 CSEM Curve

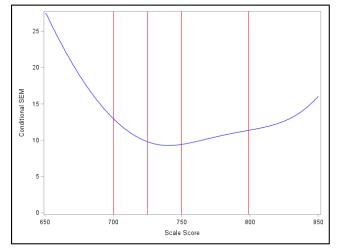



Figure N.28. ELA Grade 6 TCC

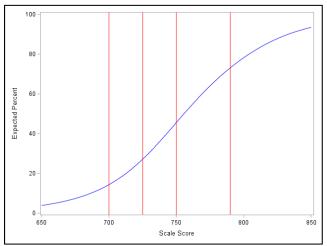



Figure N.29. ELA Grade 6 TIC

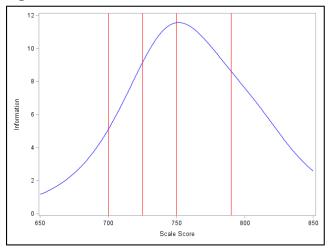



Figure N.30. ELA Grade 6 CSEM Curve

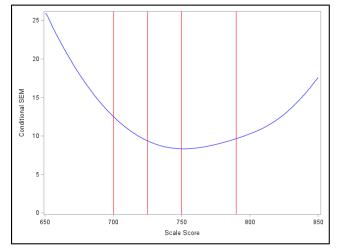



Figure N.31. ELA Grade 7 TCC

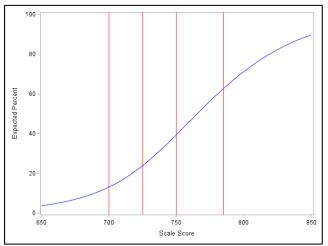



Figure N.32. ELA Grade 7 TIC

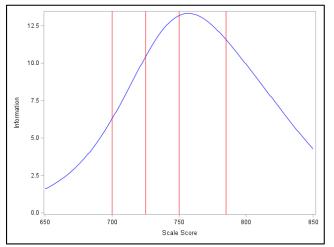



Figure N.33. ELA Grade 7 CSEM Curve

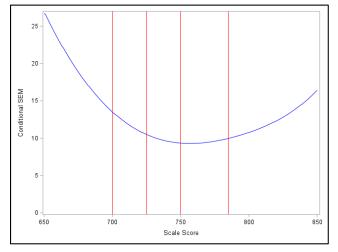



Figure N.34. ELA Grade 8 TCC

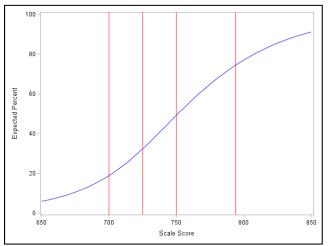



Figure N.35. ELA Grade 8 TIC

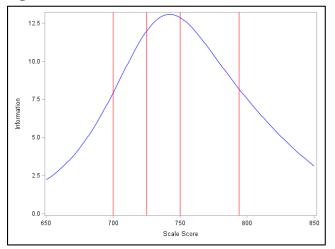



Figure N.36. ELA Grade 8 CSEM Curve

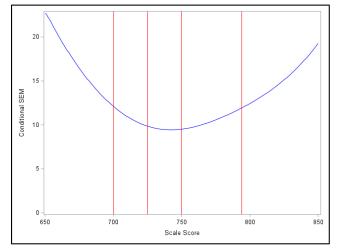



Figure N.37. CSLA Grade 3 TCC

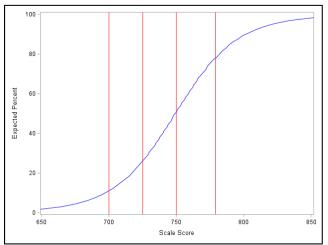



Figure N.38. CSLA Grade 3 TIC

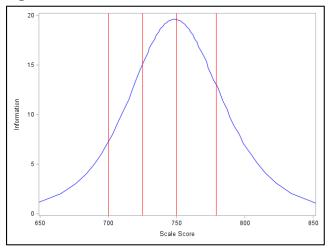



Figure N.39. CSLA Grade 3 CSEM Curve

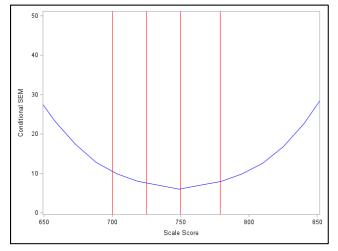



Figure N.40. CSLA Grade 4 TCC

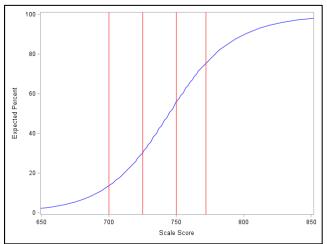
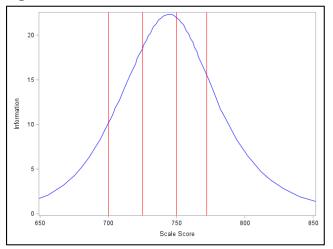




Figure N.41. CSLA Grade 4 TIC





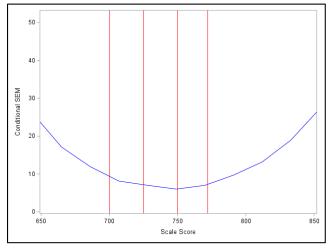



Figure N.43. ELA Reading Grade 3 TCC

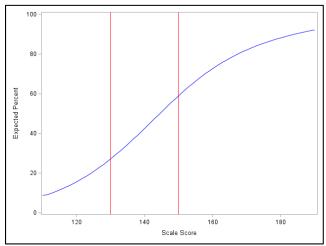



Figure N.44. ELA Reading Grade 3 TIC

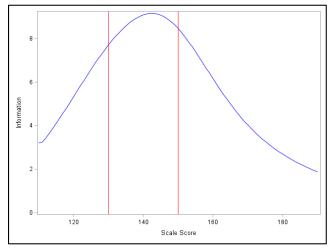



Figure N.45. ELA Reading Grade 3 CSEM Curve

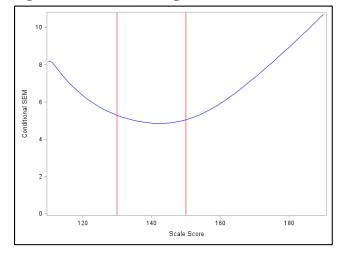



Figure N.46. ELA Reading Grade 4 TCC

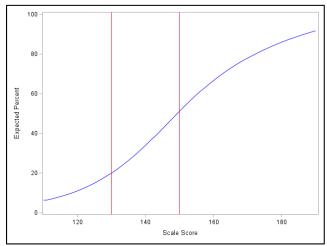



Figure N.47. ELA Reading Grade 4 TIC

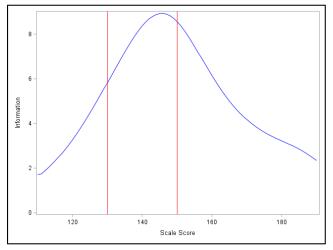



Figure N.48. ELA Reading Grade 4 CSEM Curve

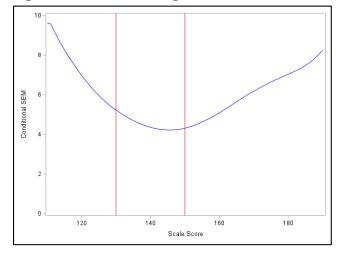



Figure N.49. ELA Reading Grade 5 TCC

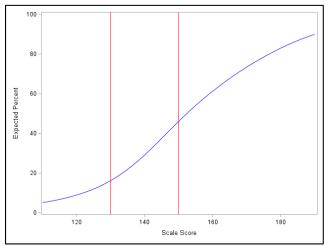



Figure N.50. ELA Reading Grade 5 TIC

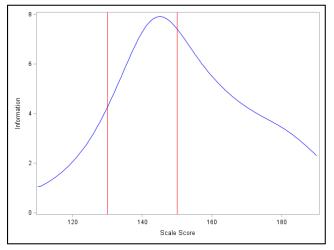



Figure N.51. ELA Reading Grade 5 CSEM Curve

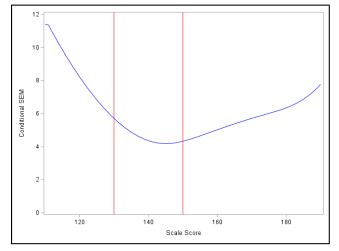



Figure N.52. ELA Reading Grade 6 TCC

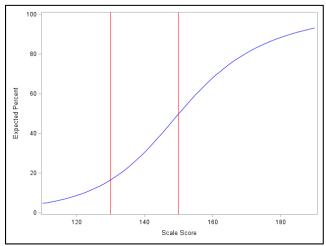



Figure N.53. ELA Reading Grade 6 TIC

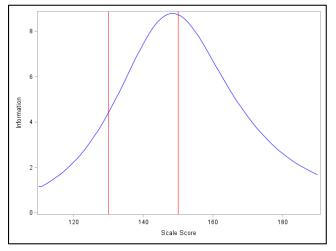



Figure N.54. ELA Reading Grade 6 CSEM Curve

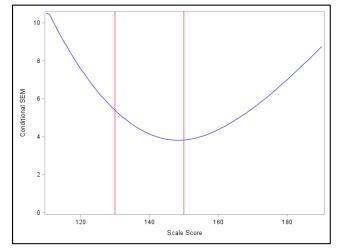



Figure N.55. ELA Reading Grade 7 TCC

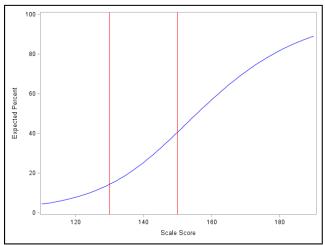



Figure N.56. ELA Reading Grade 7 TIC

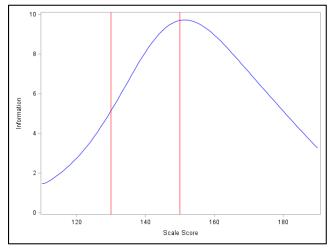



Figure N.57. ELA Reading Grade 7 CSEM Curve

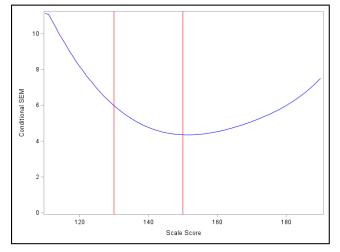



Figure N.58. ELA Reading Grade 8 TCC

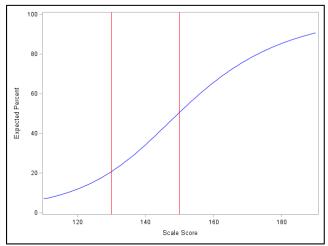



Figure N.59. ELA Reading Grade 8 TIC

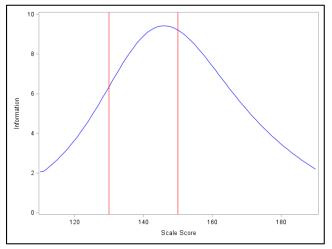
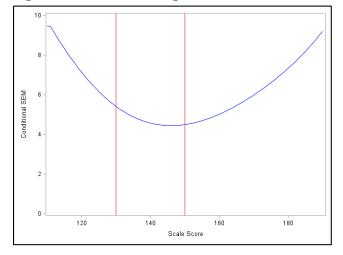




Figure N.60. ELA Reading Grade 8 CSEM Curve





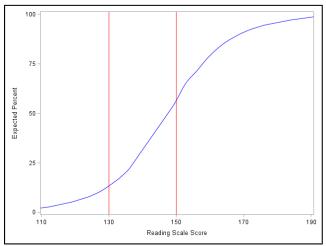
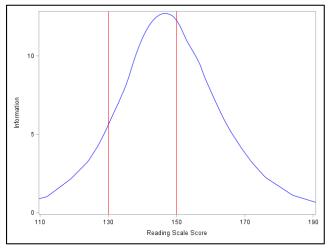
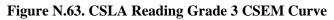





Figure N.62. CSLA Reading Grade 3 TIC







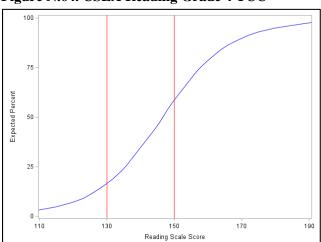



Figure N.64. CSLA Reading Grade 4 TCC

Figure N.65. CSLA Reading Grade 4 TIC

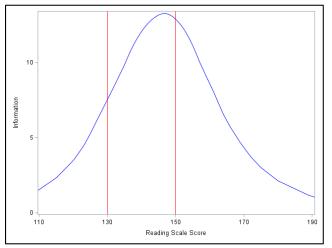



Figure N.66. CSLA Reading Grade 4 CSEM Curve

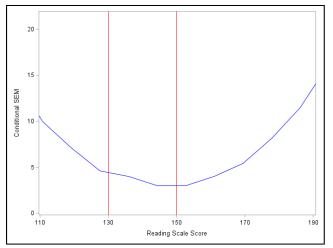



Figure N.67. Science Grade 5 TCC

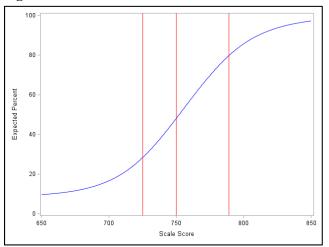



Figure N.68. Science Grade 5 TIC

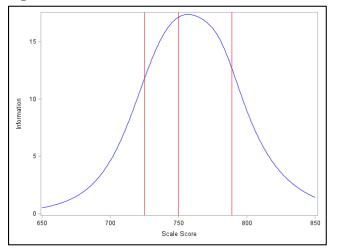



Figure N.69. Science Grade 5 CSEM

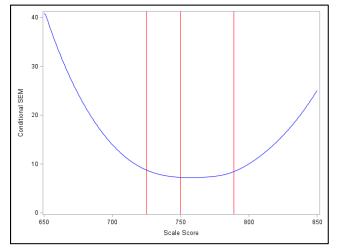



Figure N.70. Science Grade 8 TCC

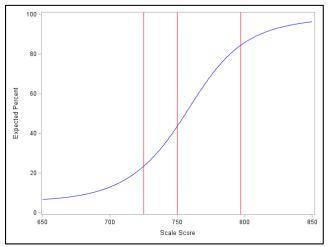



Figure N.71. Science Grade 8 TIC

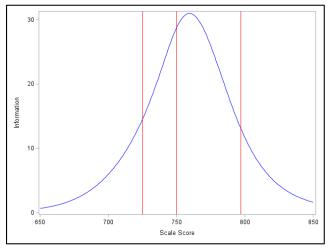



Figure N.72. Science Grade 8 CSEM

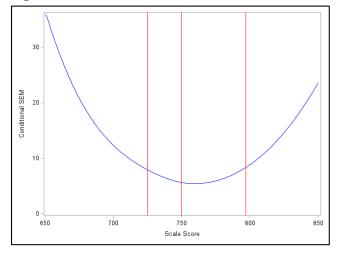



Figure N.73. Science Grade 11 TCC

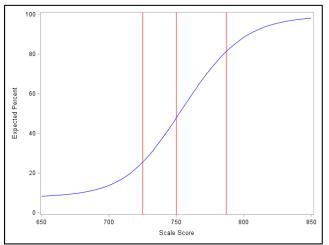



Figure N.74. Science Grade 11 TIC

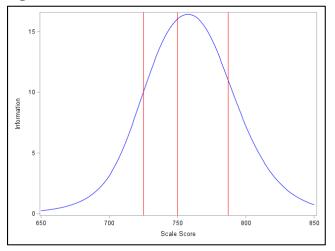
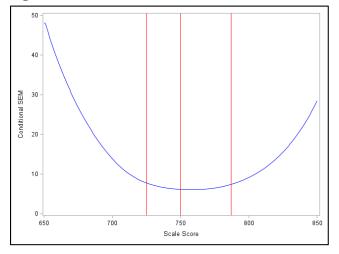




Figure N.75. Science Grade 11 CSEM



# **Appendix O: Inter-Rater Agreement**

Item	Max. Points	Ν	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
Item 1	3	5,428	88.0	11.6	0.4	0.94	0.00	0.94
Item 2	4	5,510	83.4	15.7	1.0	0.90	0.01	0.90
Item 3_PartB	2	5,059	91.4	8.3	0.2	0.92	0.02	0.92
Item 4_PartB	3	5,056	85.8	13.6	0.6	0.93	0.00	0.93
Item 4_PartC	4	4,997	92.0	6.9	1.1	0.95	0.00	0.95

#### Table O.1. Operational Rater Agreement Statistics—Mathematics Grade 3

### Table O.2. Operational Rater Agreement Statistics—Mathematics Grade 4

Item	Max. Points	Ν	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
Item 1	3	5,430	89.3	9.8	0.9	0.95	0.00	0.95
Item 2_PartB	3	5,044	93.4	5.7	0.9	0.97	0.00	0.97
Item 3	3	5,326	95.2	3.2	1.5	0.95	0.00	0.95
Item 4_PartA	2	5,118	89.5	10.2	0.2	0.90	0.01	0.90
Item 4_PartB	2	4,946	94.0	5.8	0.2	0.94	0.01	0.94
Item 5	6	5,493	89.6	9.1	1.3	0.98	0.00	0.98

#### Table O.3. Operational Rater Agreement Statistics—Mathematics Grade 5

Item	Max. Points	N	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
Item 1_PartA	3	5,494	92.0	7.4	0.7	0.96	0.00	0.96
Item 1_PartB	3	5,263	93.9	5.0	1.1	0.95	0.00	0.95
Item 2	3	5,335	90.9	8.6	0.5	0.93	0.01	0.93
Item 3_PartB	3	5,169	87.5	11.7	0.8	0.89	0.01	0.89
Item 4	4	5,449	80.9	17.1	2.1	0.92	0.00	0.92
Item 5_PartB	2	5,392	94.1	5.7	0.1	0.94	0.00	0.94

#### Table O.4. Operational Rater Agreement Statistics—Mathematics Grade 6

Item	Max. Points	Ν	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
Item 1_PartA	4	5,371	91.0	7.0	2.0	0.95	0.00	0.95
Item 1_PartB	2	5,244	97.3	2.6	0.1	0.96	0.01	0.96
Item 2	3	5,507	88.5	11.1	0.4	0.95	0.00	0.95
Item 3	4	5,389	85.1	12.7	2.2	0.91	0.00	0.91
Item 4	4	5,439	75.0	22.1	2.9	0.92	0.01	0.92
Item 5	3	5,478	80.7	17.4	1.9	0.88	0.01	0.88

## Table O.5. Operational Rater Agreement Statistics—Mathematics Grade 7

Item	Max. Points	N	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
Item 1_PartA	3	5,215	87.0	10.0	3.0	0.85	0.00	0.85
Item 1_PartB	3	5,063	91.7	6.6	1.7	0.94	0.00	0.94
Item 2	3	5,147	88.9	10.8	0.3	0.95	0.00	0.95
Item 3	4	5,190	82.8	15.5	1.7	0.93	0.01	0.93
Item 4_PartB	3	5,128	88.9	10.9	0.2	0.91	0.01	0.91
Item 5	3	5,184	84.3	14.8	0.9	0.83	0.02	0.83

Item	Max. Points	Ν	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
Item 1	3	4,942	92.1	7.6	0.3	0.96	0.01	0.96
Item 2_PartB	3	4,677	88.0	11.2	0.8	0.88	0.01	0.88
Item 3	4	4,838	89.4	9.6	1.0	0.91	0.00	0.91
Item 4	3	5,033	87.9	10.7	1.4	0.93	0.00	0.93
Item 5_PartA	4	4,914	93.4	6.0	0.6	0.96	0.00	0.96
Item 5_PartB	2	4,809	90.2	9.5	0.3	0.92	0.00	0.92

 Table O.6. Operational Rater Agreement Statistics—Mathematics Grade 8

## Table O.7. Field Test Rater Agreement Statistics—Mathematics Grade 3

Item	Max. Points	Ν	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
Item 1	3	2,945	94.8	3.8	1.4	0.97	0.01	0.97
Item 2	3	2,929	92.8	6.7	0.5	0.97	0.00	0.97
Item 3	3	2,899	87.4	11.8	0.8	0.94	0.01	0.94
Item 4_PartA	2	2,762	92.0	7.7	0.2	0.93	0.00	0.93
Item 5	3	2,865	92.3	6.8	0.9	0.92	0.00	0.92
Item 6_PartB	3	2,997	87.5	12.3	0.3	0.94	0.01	0.94
Item 7_PartA	2	2,957	92.7	7.2	0.1	0.95	0.00	0.95
Item 7_PartB	2	2,956	91.0	8.9	0.1	0.92	0.02	0.92
Item 8_PartC	2	2,997	90.8	9.1	0.0	0.91	0.00	0.91
Item 9_PartB	2	2,831	95.3	4.6	0.1	0.97	0.00	0.97
Item 10_PartC	2	2,899	97.2	2.7	0.1	0.97	0.00	0.97
Item 10_PartD	2	2,899	95.4	4.5	0.1	0.96	0.00	0.96
Item 11	3	2,993	90.4	9.1	0.5	0.96	0.00	0.96
Item 12	3	2,996	81.1	17.6	1.3	0.91	0.00	0.91
Item 13_PartB	2	2,881	92.4	7.4	0.2	0.94	0.00	0.94
Item 14	3	2,875	85.1	13.8	1.1	0.89	0.01	0.89
Item 15_PartA	2	2,911	90.3	9.4	0.3	0.93	0.00	0.93
Item 15_PartB	2	2,908	92.2	7.6	0.2	0.92	0.02	0.92
Item 16_PartB	3	2,963	85.2	13.8	1.0	0.91	0.02	0.91
Item 17_PartA	2	2,995	94.3	5.6	0.1	0.94	0.01	0.95
Item 17_PartB	2	2,995	90.9	9.1	0.0	0.92	0.02	0.92
Item 18	3	2,996	86.7	12.5	0.8	0.94	0.01	0.94
Item 19_PartA	2	2,908	90.3	9.6	0.1	0.90	0.01	0.90
Item 19_PartB	2	2,908	91.8	8.0	0.1	0.93	0.01	0.93
Item 20_PartA	2	2,873	97.0	2.9	0.2	0.98	0.00	0.98
Item 20_PartB	2	2,873	97.3	2.6	0.1	0.97	0.01	0.97
Item 21_PartA	2	2,901	91.2	8.7	0.1	0.93	0.00	0.93
Item 21_PartB	2	2,900	93.1	6.9	0.0	0.94	0.01	0.94
Item 23_PartB	2	2,852	97.3	2.7	0.0	0.98	0.00	0.98
Item 24_PartA	4	2,985	93.5	5.7	0.8	0.98	0.01	0.98
Item 24_PartB	2	2,983	94.8	5.0	0.2	0.97	0.00	0.97
Item 25_PartB	2	2,984	93.9	5.5	0.5	0.95	0.00	0.95
Item 25_PartC	3	2,983	90.3	9.3	0.4	0.95	0.00	0.95

Item	Max. Points	Ν	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
Item 1_PartB	2	2,998	90.2	9.7	0.1	0.88	0.00	0.88
Item 2	3	2,997	80.7	18.1	1.1	0.89	0.01	0.89
Item 3	3	2,988	89.4	9.9	0.8	0.90	0.01	0.90
Item 4_PartA	2	2,838	94.9	4.7	0.4	0.95	0.01	0.95
Item 4_PartB	2	2,832	94.1	5.8	0.2	0.90	0.00	0.90
Item 5_PartA	2	2,992	92.1	7.7	0.2	0.95	0.00	0.95
Item 5_PartB	2	2,985	90.5	9.0	0.5	0.89	0.01	0.89
Item 6	3	2,990	92.5	6.1	1.3	0.89	0.01	0.89
Item 7	3	2,973	86.2	13.0	0.8	0.94	0.01	0.94
Item 8_PartB	2	2,969	94.1	5.6	0.4	0.95	0.01	0.95
Item 9	3	2,994	81.9	16.7	1.4	0.87	0.01	0.87
Item 10_PartB	3	2,992	82.6	16.2	1.2	0.91	0.01	0.91
Item 11_PartA	2	2,994	93.6	6.2	0.2	0.96	0.00	0.96
Item 11_PartB	2	2,990	90.0	9.7	0.3	0.93	0.00	0.93
Item 12_PartA	2	2,828	92.6	7.2	0.2	0.95	0.01	0.95
Item 12_PartB	2	2,823	93.2	6.7	0.1	0.95	0.00	0.95
Item 13_PartA	2	2,878	90.6	9.1	0.3	0.89	0.01	0.89
Item 13_PartB	2	2,870	92.0	7.8	0.2	0.84	0.00	0.84
Item 14	3	2,992	80.7	17.9	1.4	0.90	0.00	0.90
Item 15	3	2,944	79.8	19.4	0.8	0.87	0.00	0.87
Item 16_PartA	2	2,866	92.6	7.2	0.1	0.91	0.01	0.91
Item 17_PartA	2	2,888	89.6	10.0	0.3	0.93	0.00	0.93
Item 17_PartB	2	2,886	91.0	8.9	0.1	0.93	0.01	0.93
Item 18	4	2,896	84.2	13.0	2.8	0.91	0.01	0.91
Item 19_PartA	2	2,818	90.2	9.6	0.2	0.92	0.01	0.92
Item 19_PartB	2	2,814	94.7	5.2	0.1	0.96	0.01	0.96
Item 20_PartB	3	2,975	91.7	7.7	0.7	0.95	0.00	0.95
Item 20_PartC	2	2,972	90.6	6.8	2.6	0.89	0.00	0.89
Item 21_PartB	3	2,888	87.4	11.3	1.4	0.89	0.01	0.89
Item 21_PartC	2	2,884	96.7	2.6	0.7	0.97	0.01	0.97
Item 22	3	2,994	91.1	8.2	0.7	0.94	0.00	0.94

 Table O.8. Field Test Rater Agreement Statistics—Mathematics Grade 4

Tuble 07.11cht 16st Auter Agreement Statistics - Shattematics Office 5									
Item	Max. Points	N	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.	
Item 1_PartC	4	2,986	85.0	14.0	1.0	0.95	0.01	0.95	
Item 2	3	2,989	82.3	16.4	1.3	0.89	0.01	0.89	
Item 3_PartA	2	2,995	90.2	9.7	0.1	0.89	0.03	0.89	
Item 3_PartB	2	2,993	96.4	3.1	0.5	0.97	0.00	0.97	
Item 4_PartB	3	2,983	94.7	5.0	0.3	0.94	0.00	0.94	
Item 5_PartB	3	2,992	94.2	5.7	0.0	0.95	0.01	0.95	
Item- 6	4	2,990	84.5	15.5	0.0	0.92	0.01	0.92	
Item 7_PartB	3	2,994	96.5	3.1	0.4	0.99	0.01	0.99	
Item 8_PartA	3	2,983	88.4	10.9	0.7	0.93	0.00	0.93	
Item 8_PartB	3	2,986	91.6	7.4	1.0	0.96	0.01	0.96	
Item 9	3	2,988	93.0	6.4	0.6	0.97	0.01	0.97	
Item 10	3	2,992	90.9	8.9	0.2	0.97	0.00	0.97	
Item 11	3	2,994	89.1	10.4	0.6	0.93	0.02	0.93	
Item 12	3	2,991	83.7	14.4	1.9	0.90	0.01	0.90	
Item 13_PartA	2	2,989	94.4	4.3	1.3	0.93	0.01	0.93	
Item 13_PartB	2	2,990	92.5	7.4	0.1	0.93	0.01	0.93	
Item 14	3	2,992	86.0	13.5	0.5	0.94	0.01	0.95	
Item 15	3	2,987	90.9	8.1	0.9	0.94	0.01	0.94	
Item 16	3	2,996	91.7	8.0	0.3	0.97	0.01	0.97	
Item 17	3	2,990	86.9	13.1	0.0	0.95	0.00	0.95	
Item 18	4	2,997	87.7	10.9	1.4	0.92	0.00	0.92	
Item 19	4	2,993	77.7	19.3	3.0	0.92	0.00	0.92	
Item 19	3	2,990	84.7	14.7	0.6	0.90	0.01	0.90	
Item 20_PartA	2	2,997	94.3	5.4	0.3	0.96	0.00	0.96	
Item 20_PartB	4	2,996	87.0	12.1	0.9	0.96	0.00	0.96	
Item 21_PartB	3	2,992	88.3	10.6	1.1	0.93	0.00	0.93	
Item 21_PartC	2	2,991	93.5	6.1	0.4	0.95	0.00	0.95	

 Table O.9. Field Test Rater Agreement Statistics—Mathematics Grade 5

Itam	Max. Points	N	%Exact	%Adjacent	%Non-Adjacent	Vanna	MD	Corr.
Item				5	5	Kappa		
Item 1	3	2,982	81.4	16.1	2.5	0.84	0.02	0.84
Item 2	3	2,991	92.2	7.3	0.5	0.95	0.00	0.95
Item 3	3	2,985	86.2	13.2	0.6	0.92	0.01	0.92
Item 4_PartB	2	2,988	90.3	9.3	0.4	0.88	0.01	0.88
Item 5	3	2,974	92.7	7.1	0.2	0.91	0.01	0.91
Item 6	3	2,994	88.6	10.5	0.9	0.94	0.01	0.94
Item 7	4	2,983	83.5	15.1	1.4	0.93	0.01	0.93
Item 8	3	2,995	94.4	5.6	0.0	0.97	0.00	0.97
Item 9	3	2,989	92.3	7.3	0.4	0.96	0.00	0.96
Item 10	3	2,987	89.3	9.7	1.0	0.93	0.00	0.93
Item 11	3	2,987	85.4	13.6	1.0	0.85	0.02	0.85
Item 12_PartA	2	2,985	90.8	9.1	0.2	0.91	0.00	0.91
Item 12_PartB	2	2,987	92.6	7.3	0.1	0.89	0.00	0.89
Item 13_PartA	2	2,989	89.8	10.1	0.1	0.90	0.00	0.90
Item 13_PartB	2	2,985	93.0	6.9	0.1	0.93	0.01	0.93
Item 14_PartA	2	2,993	95.6	4.0	0.3	0.97	0.00	0.97
Item 14_PartB	2	2,989	90.2	9.6	0.2	0.91	0.00	0.91
Item 15	3	2,997	85.8	13.9	0.3	0.84	0.01	0.84
Item 16	3	2,993	89.0	9.8	1.2	0.89	0.00	0.89
Item 17	4	2,990	91.5	8.2	0.2	0.97	0.00	0.97
Item 18	4	2,989	88.8	10.4	0.8	0.97	0.00	0.97
Item 19_PartA	2	2,989	91.6	8.2	0.2	0.90	0.01	0.90
Item 19_PartB	2	2,982	96.8	3.0	0.3	0.89	0.01	0.89
Item 20	3	2,984	86.4	11.8	1.8	0.91	0.00	0.91
Item 21	3	2,992	90.7	9.1	0.2	0.96	0.01	0.96
Item 22_PartA	3	2,994	91.0	7.4	1.6	0.95	0.00	0.95
Item 22_PartB	3	2,991	87.5	12.0	0.5	0.92	0.01	0.92

 Table O.10. Field Test Rater Agreement Statistics—Mathematics Grade 6

Tuble 0.11. There rest nater regreement statistics - mathematics 0 rate 7									
Item	Max. Points	N	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.	
Item 1	3	2,968	94.2	5.1	0.7	0.86	0.00	0.86	
Item 2_PartA	2	2,988	94.1	5.4	0.5	0.95	0.00	0.95	
Item 2_PartB	2	2,987	95.8	4.1	0.1	0.97	0.00	0.97	
Item 3	3	2,978	91.9	7.2	0.9	0.95	0.00	0.95	
Item 4	3	2,985	92.2	7.4	0.4	0.95	0.00	0.95	
Item 5	3	2,985	91.6	7.2	1.2	0.92	0.00	0.92	
Item 6	3	2,969	96.2	3.3	0.5	0.95	0.00	0.95	
Item 7_PartB	3	2,986	92.7	7.0	0.2	0.97	0.01	0.97	
Item 8	4	2,979	82.8	15.4	1.7	0.94	0.00	0.94	
Item 9	4	2,986	83.1	15.8	1.1	0.93	0.01	0.93	
Item 10	4	2,983	92.3	7.2	0.6	0.92	0.00	0.92	
Item 11	4	2,980	87.6	11.7	0.7	0.96	0.00	0.96	
Item 12_PartB	3	2,980	92.7	6.9	0.4	0.96	0.00	0.96	
Item 13	3	2,983	88.9	10.5	0.6	0.94	0.01	0.94	
Item 14	3	2,974	84.4	14.1	1.4	0.90	0.00	0.90	
Item 15	3	2,989	94.3	5.2	0.5	0.97	0.01	0.97	
Item 16	3	2,986	91.3	8.4	0.3	0.96	0.00	0.96	
Item 17	4	2,991	93.2	5.8	1.0	0.98	0.00	0.98	
Item 18	4	2,984	84.6	13.3	2.1	0.95	0.01	0.95	
Item 19	4	2,979	92.6	6.5	0.9	0.98	0.00	0.98	
Item 20	3	2,992	93.8	5.7	0.5	0.96	0.00	0.96	
Item 21	6	2,984	84.9	13.7	1.4	0.97	0.00	0.97	
Item 22_PartA	4	2,991	90.8	7.3	1.9	0.96	0.00	0.96	
Item 22_PartB	2	2,980	97.1	2.7	0.2	0.93	0.00	0.93	

 Table O.11. Field Test Rater Agreement Statistics—Mathematics Grade 7

Item	Max. Points	N	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.		
Item 1	3	2,977	93.1	6.6	0.3	0.96	0.00	0.96		
Item 2_PartA	2	2,982	92.7	6.9	0.4	0.95	0.01	0.95		
Item 2_PartB	2	2,967	97.0	3.0	0.1	0.96	0.00	0.96		
Item 3	6	2,964	90.1	7.8	2.1	0.93	0.00	0.93		
Item 4	3	2,972	88.9	10.1	1.0	0.93	0.00	0.93		
Item 5	3	2,968	86.6	12.4	1.0	0.95	0.01	0.95		
Item 6_PartA	4	2,980	92.9	6.6	0.4	0.97	0.01	0.97		
Item 6_PartB	2	2,975	97.9	1.9	0.2	0.95	0.00	0.95		
Item 7	3	2,988	92.2	7.7	0.1	0.96	0.01	0.96		
Item 8_PartA	2	2,975	94.1	5.8	0.1	0.95	0.00	0.95		
Item 8_PartB	2	2,967	97.8	2.2	0.0	0.99	0.00	0.99		
Item 9	3	2,980	87.3	12.0	0.6	0.93	0.00	0.93		
Item 10	4	2,988	93.2	6.2	0.6	0.98	0.00	0.98		
Item 11	3	2,976	95.6	4.0	0.4	0.97	0.00	0.97		
Item 12_PartB	2	2,964	97.9	2.0	0.1	0.96	0.01	0.96		
Item 13	3	2,979	83.8	15.6	0.6	0.91	0.00	0.91		
Item 14	4	2,990	98.2	1.5	0.3	0.96	0.00	0.96		
Item 15	6	2,979	86.7	12.5	0.8	0.98	0.00	0.98		

 Table O.12. Field Test Rater Agreement Statistics—Mathematics Grade 8

### Table O.13. Operational Rater Agreement Statistics—ELA Grade 3

Item	Max. Points	N	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
PCR 1 WKL	3	5,578	85.7	14.3	0.0	0.81	0.01	0.81
PCR 1 WE	3	5,578	82.8	17.1	0.1	0.77	0.01	0.77
PCR 2 WKL	3	5,580	86.1	13.9	0.0	0.80	0.01	0.80
PCR 2 WE	3	5,580	81.9	17.9	0.1	0.79	0.01	0.79

Table O.14. Operational Rater Agreement Statistics—ELA Grade 4

Item	Max. Points	Ν	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
PCR 1 WKL	3	5,545	80.9	18.8	0.2	0.85	0.02	0.85
PCR 1 WE	3	5,545	80.9	19.0	0.2	0.86	0.01	0.86
PCR 2 WKL	3	5,557	80.3	19.6	0.1	0.77	0.03	0.77
PCR 2 WE	4	5,557	74.9	24.9	0.2	0.71	0.01	0.71

### Table O.15. Operational Rater Agreement Statistics—ELA Grade 5

Item	Max. Points	Ν	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
PCR 1 WKL	3	5,678	80.8	19.1	0.1	0.87	0.01	0.87
PCR 1 WE	3	5,678	80.9	19.1	0.1	0.88	0.01	0.88
PCR 2 WKL	3	5,662	80.8	18.6	0.6	0.78	0.01	0.78
PCR 2 WE	4	5,662	74.8	24.1	1.1	0.74	0.00	0.74

Item	Max. Points	Ν	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
PCR 1 WKL	3	5,569	80.7	19.3	0.0	0.88	0.00	0.88
PCR 1 WE	4	5,569	79.6	20.4	0.0	0.88	0.01	0.88
PCR 2 WKL	3	5,561	79.6	19.8	0.6	0.84	0.01	0.84
PCR 2 WE	4	5,561	77.6	22.0	0.4	0.83	0.01	0.83

Table O.16. Operational Rater Agreement Statistics—ELA Grade 6

## Table O.17. Operational Rater Agreement Statistics—ELA Grade 7

Item	Max. Points	Ν	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
PCR 1 WKL	3	5,393	79.9	19.6	0.5	0.90	0.01	0.90
PCR 1 WE	4	5,393	77.4	22.1	0.5	0.90	0.01	0.90
PCR 2 WKL	3	5,387	79.7	19.8	0.5	0.87	0.01	0.87
PCR 2 WE	4	5,387	74.7	24.8	0.5	0.84	0.01	0.84

Table O.18. Operational Rater Agreement Statistics—ELA Grade 8

Item	Max. Points	Ν	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
PCR 1 WKL	3	5,200	79.3	19.9	0.8	0.89	0.00	0.89
PCR 1 WE	4	5,200	77.5	21.7	0.8	0.89	0.00	0.89
PCR 2 WKL	3	5,205	79.5	20.4	0.1	0.91	0.04	0.91
PCR 2 WE	4	5,205	80.0	20.0	0.0	0.92	0.01	0.92

Table O.19. Field Test Rater Agreement Statistics—ELA Grade 3

Item	Max. Points	Ν	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
PCR 1 WKL	3	3,082	88.1	11.9	0.0	0.81	0.02	0.81
PCR 1 WE	3	3,082	83.6	16.4	0.0	0.69	0.03	0.69
PCR 2 WKL	3	3,066	91.3	8.7	0.0	0.87	0.00	0.87
PCR 2 WE	3	3,066	80.6	19.3	0.0	0.71	0.01	0.71
PCR 3 WKL	3	3,062	85.2	14.5	0.3	0.82	0.01	0.82
PCR 3 WE	3	3,062	79.9	19.9	0.2	0.73	0.02	0.73
PCR 4 WKL	3	3,059	84.3	15.7	0.0	0.78	0.00	0.78
PCR 4 WE	3	3,059	83.8	16.2	0.0	0.66	0.02	0.66
PCR 5 WKL	3	3,073	84.8	15.2	0.0	0.79	0.02	0.79
PCR 5 WE	3	3,073	82.5	17.5	0.0	0.65	0.02	0.65
PCR 6 WKL	3	3,061	85.2	14.8	0.0	0.79	0.02	0.79
PCR 6 WE	3	3,061	79.6	20.4	0.0	0.63	0.02	0.63
PCR 7 WKL	3	3,000	85.7	14.3	0.0	0.78	0.01	0.78
PCR 7 WE	3	3,000	80.7	19.2	0.0	0.66	0.02	0.66
PCR 8 WKL	3	3,099	85.8	14.2	0.0	0.80	0.02	0.80
PCR 8 WE	3	3,099	80.3	19.6	0.1	0.65	0.01	0.65
PCR 9 WKL	3	3,075	83.4	16.6	0.0	0.76	0.00	0.76
PCR 9 WE	3	3,075	80.8	19.1	0.0	0.59	0.06	0.59

		0						
Item	Max. Points	Ν	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
PCR 1 WKL	3	3,101	79.7	20.3	0.0	0.80	0.01	0.80
PCR 1 WE	4	3,101	78.9	21.0	0.1	0.78	0.03	0.78
PCR 2 WKL	3	3,085	80.2	19.5	0.3	0.76	0.01	0.76
PCR 2 WE	4	3,085	76.9	22.6	0.4	0.75	0.02	0.75
PCR 3 WKL	3	3,072	86.5	13.5	0.0	0.91	0.00	0.91
PCR 3 WE	3	3,072	87.4	12.6	0.0	0.91	0.01	0.91
PCR 4 WKL	3	2,999	85.8	14.2	0.0	0.88	0.01	0.89
PCR 4 WE	3	2,999	84.8	15.2	0.0	0.87	0.00	0.87
PCR 5 WKL	3	3,047	81.1	18.7	0.1	0.78	0.02	0.78
PCR 5 WE	4	3,047	73.3	26.7	0.0	0.73	0.04	0.73
PCR 6 WKL	3	3,040	83.0	17.0	0.0	0.80	0.02	0.80
PCR 6 WE	4	3,040	75.3	24.7	0.0	0.71	0.01	0.71
PCR 7 WKL	3	3,080	80.6	19.2	0.2	0.77	0.00	0.78
PCR 7 WE	4	3,080	73.2	26.8	0.0	0.72	0.01	0.72
PCR 8 WKL	3	3,060	80.3	19.7	0.0	0.78	0.01	0.78
PCR 8 WE	4	3,060	74.0	26.0	0.0	0.72	0.02	0.72
PCR 9 WKL	3	3,081	81.3	18.2	0.4	0.75	0.01	0.75
PCR 9 WE	4	3,081	75.0	23.7	1.3	0.64	0.02	0.64
PCR 10 WKL	3	3,042	82.6	17.4	0.0	0.77	0.03	0.77
PCR 10 WE	4	3,042	76.2	23.8	0.0	0.67	0.02	0.67

Table O.20. Field Test Rater Agreement Statistics—ELA Grade 4

 Table O.21. Field Test Rater Agreement Statistics—ELA Grade 5

Item	Max. Points	Ν	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
PCR 1 WKL	3	3,064	81.1	18.3	0.6	0.83	0.01	0.83
PCR 1 WE	4	3,064	78.4	20.8	0.8	0.82	0.02	0.82
PCR 2 WKL	3	2,993	80.0	19.7	0.4	0.82	0.07	0.82
PCR 2 WE	4	2,993	72.9	26.6	0.5	0.79	0.01	0.79
PCR 3 WKL	3	2,997	80.2	19.7	0.1	0.85	0.10	0.85
PCR 3 WE	4	2,997	70.2	29.7	0.1	0.79	0.05	0.79
PCR 4 WKL	3	2,996	80.9	19.0	0.1	0.83	0.01	0.83
PCR 4 WE	4	2,996	79.7	20.3	0.0	0.82	0.00	0.82
PCR 5 WKL	3	2,996	80.4	19.6	0.0	0.81	0.01	0.81
PCR 5 WE	4	2,996	74.3	25.7	0.0	0.78	0.01	0.78
PCR 6 WKL	3	3,108	79.4	20.5	0.1	0.84	0.02	0.84
PCR 6 WE	4	3,108	78.1	21.7	0.2	0.82	0.00	0.82

Item	Max. Points	N	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
PCR 1 WKL	3	2,985	80.0	19.3	0.7	0.85	0.00	0.85
PCR 1 WE	4	2,985	79.6	19.7	0.8	0.85	0.00	0.85
PCR 2 WKL	3	3,033	79.9	19.9	0.2	0.85	0.02	0.85
PCR 2 WE	4	3,033	79.8	19.8	0.4	0.85	0.01	0.85
PCR 3 WKL	3	2,978	81.3	18.4	0.2	0.84	0.03	0.84
PCR 3 WE	4	2,978	80.4	19.5	0.2	0.83	0.02	0.84
PCR 4 WKL	3	2,982	83.2	16.6	0.3	0.85	0.04	0.85
PCR 4 WE	4	2,982	79.9	19.8	0.2	0.83	0.01	0.83
PCR 5 WKL	3	2,980	80.0	19.9	0.2	0.80	0.03	0.80
PCR 5 WE	4	2,980	78.1	21.9	0.0	0.79	0.01	0.79
PCR 6 WKL	3	3,054	79.9	19.9	0.2	0.84	0.02	0.84
PCR 6 WE	4	3,054	82.8	17.1	0.1	0.87	0.02	0.87
PCR 7 WKL	3	3,021	80.2	19.7	0.1	0.88	0.00	0.88
PCR 7 WE	4	3,021	74.7	25.3	0.1	0.88	0.03	0.88
PCR 8 WKL	3	2,983	80.2	19.8	0.0	0.89	0.01	0.89
PCR 8 WE	4	2,983	78.0	21.9	0.0	0.89	0.03	0.89
PCR 9 WKL	3	2,992	80.1	19.9	0.0	0.88	0.01	0.88
PCR 9 WE	4	2,992	71.4	28.6	0.0	0.89	0.01	0.89
PCR 10 WKL	3	2,982	80.9	19.0	0.0	0.89	0.01	0.89
PCR 10 WE	4	2,982	76.1	23.9	0.0	0.90	0.00	0.90

 Table O.22. Field Test Rater Agreement Statistics—ELA Grade 6

Table 0.23.	Field Test Ra	ter Agreemen	nt Statistics–	-ELA Grade 7
	I ICIU I COU INU	ter rigi cennen	it bratistics	LLII Oluut /

Item	Max. Points	Ν	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
PCR 1 WKL	3	3,000	80.1	19.9	0.0	0.88	0.00	0.88
PCR 1 WE	4	3,000	76.9	23.1	0.0	0.87	0.00	0.87
PCR 2 WKL	3	3,000	79.9	19.3	0.8	0.88	0.01	0.88
PCR 2 WE	4	3,000	74.7	24.6	0.7	0.88	0.01	0.88
PCR 3 WKL	3	2,981	80.1	19.8	0.2	0.87	0.02	0.88
PCR 3 WE	4	2,981	74.3	25.4	0.3	0.87	0.01	0.87
PCR 4 WKL	3	3,081	81.3	18.3	0.4	0.89	0.01	0.89
PCR 4 WE	4	3,081	79.8	20.0	0.2	0.90	0.01	0.90
PCR 5 WKL	3	2,998	79.9	19.4	0.8	0.89	0.00	0.89
PCR 5 WE	4	2,998	80.4	19.3	0.3	0.91	0.00	0.91
PCR 6 WKL	3	2,994	79.9	18.9	1.1	0.89	0.01	0.89
PCR 6 WE	4	2,994	77.5	21.7	0.9	0.89	0.02	0.89
PCR 7 WKL	3	2,997	81.3	18.6	0.1	0.88	0.01	0.88
PCR 7 WE	4	2,997	81.8	18.1	0.1	0.90	0.01	0.90
PCR 8 WKL	3	2,996	80.0	19.9	0.1	0.89	0.09	0.89
PCR 8 WE	4	2,996	73.7	26.1	0.1	0.87	0.04	0.87
PCR 9 WKL	3	3,076	79.2	19.7	1.1	0.86	0.02	0.86
PCR 9 WE	4	3,076	81.4	17.9	0.7	0.89	0.02	0.89
PCR 10 WKL	3	2,999	79.9	19.8	0.3	0.86	0.01	0.86
PCR 10 WE	4	2,999	77.9	21.7	0.4	0.87	0.01	0.87
PCR 11 WKL	3	2,998	80.9	18.1	1.0	0.90	0.02	0.90

Item	Max. Points	N	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
PCR 11 WE	4	2,998	79.4	19.7	1.0	0.91	0.00	0.91
PCR 12 WKL	3	2,993	80.5	19.3	0.3	0.89	0.06	0.89
PCR 12 WE	4	2,993	73.1	26.5	0.4	0.87	0.01	0.87

 Table O.24. Field Test Rater Agreement Statistics—ELA Grade 8

Item	Max. Points	N	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
PCR 1 WKL	3	3,077	81.1	18.5	0.4	0.91	0.00	0.91
PCR 1 WE	4	3,077	84.0	15.9	0.1	0.93	0.01	0.93
PCR 2 WKL	3	2,995	80.2	19.8	0.1	0.91	0.01	0.91
PCR 2 WE	4	2,995	83.5	16.5	0.0	0.93	0.01	0.93
PCR 3 WKL	3	3,123	83.1	16.2	0.7	0.91	0.01	0.91
PCR 3 WE	4	3,123	79.9	19.4	0.8	0.91	0.00	0.91
PCR 4 WKL	3	2,986	79.8	19.2	1.0	0.90	0.01	0.90
PCR 4 WE	4	2,986	77.0	22.1	0.9	0.91	0.00	0.91
PCR 5 WKL	3	2,986	81.7	18.0	0.3	0.91	0.02	0.91
PCR 5 WE	4	2,986	73.7	25.7	0.6	0.89	0.02	0.89
PCR 6 WKL	3	2,989	83.8	15.4	0.7	0.92	0.00	0.92
PCR 6 WE	4	2,989	79.6	19.5	0.9	0.91	0.00	0.91
PCR 7 WKL	3	3,035	80.0	19.5	0.5	0.90	0.02	0.90
PCR 7 WE	4	3,035	78.6	21.0	0.3	0.91	0.01	0.91
PCR 8 WKL	3	2,994	82.0	17.6	0.4	0.91	0.04	0.91
PCR 8 WE	4	2,994	74.9	25.0	0.1	0.90	0.01	0.90
PCR 9 WKL	3	2,987	81.0	18.9	0.0	0.92	0.08	0.92
PCR 9 WE	4	2,987	73.6	26.4	0.0	0.90	0.01	0.90
PCR 1 WKL	3	2,990	81.0	19.0	0.0	0.92	0.01	0.92
PCR 1 WE	4	2,990	80.4	19.5	0.1	0.92	0.01	0.92
PCR 2 WKL	3	2,980	81.9	18.1	0.0	0.91	0.01	0.91
PCR 2 WE	4	2,980	83.5	16.4	0.1	0.93	0.01	0.93
PCR 3 WKL	3	2,982	80.5	19.5	0.0	0.91	0.01	0.91
PCR 3 WE	4	2,982	85.6	14.3	0.1	0.94	0.00	0.94

## Table O.25. Operational Rater Agreement Statistics—CSLA Grade 3

Item	Max. Points	Ν	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
PCR 1 WE	3	147	86.8	13.2	0.0	0.90	0.02	0.90
PCR 1 WKL	3	147	89.7	10.3	0.0	0.92	0.02	0.92
PCR 2 WE	3	147	98.5	1.5	0.0	0.99	0.00	0.99
PCR 2 WKL	3	147	93.9	6.1	0.0	0.96	0.00	0.96

## Table O.26. Operational Rater Agreement Statistics—CSLA Grade 4

Item	Max. Points	N	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
PCR 1 WE	3	118	88.0	12.0	0.0	0.95	0.00	0.95
PCR 1 WKL	3	118	89.7	10.3	0.0	0.95	0.00	0.95
PCR 2 WE	4	119	84.7	15.3	0.0	0.94	0.07	0.94
PCR 2 WKL	3	119	91.9	8.1	0.0	0.96	0.04	0.96

Item	Max. Points	N	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
PCR 1 WE	3	360	96.4	3.6	0.0	0.97	0.02	0.97
PCR 1 WKL	3	360	90.8	9.2	0.0	0.94	0.06	0.95
PCR 2 WE	3	369	98.2	1.8	0.0	0.99	0.00	0.99
PCR 2 WKL	3	369	92.4	7.6	0.0	0.95	0.04	0.95
PCR 3 WE	3	364	94.7	5.3	0.0	0.97	0.01	0.97
PCR 3 WKL	3	364	94.4	5.6	0.0	0.96	0.00	0.96
PCR 4 WE	3	365	91.5	8.5	0.0	0.94	0.01	0.94
PCR 4 WKL	3	365	91.2	8.8	0.0	0.95	0.04	0.95

 Table O.27. Field Test Rater Agreement Statistics—CSLA Grade 3

### Table O.28. Field Test Rater Agreement Statistics—CSLA Grade 4

Item	Max. Points	Ν	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
PCR 1 WE	4	588	91.1	8.9	0.0	0.96	0.01	0.96
PCR 1 WKL	3	588	94.8	5.2	0.0	0.97	0.01	0.97
PCR 2 WE	4	595	89.3	10.7	0.0	0.89	0.01	0.90
PCR 2 WKL	3	595	91.4	8.6	0.0	0.95	0.00	0.95

### Table O.29. Operational Rater Agreement Statistics—Science Grade 5

Item	Max. Points	N	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
Item 1	2	5,622	90.0	8.8	1.2	0.89	0.00	0.89
Item 2	2	5,623	89.9	9.7	0.3	0.91	0.00	0.91
Item 3	2	5,623	91.0	8.7	0.3	0.84	0.01	0.84
Item 4	2	5,363	90.0	8.3	1.7	0.85	0.01	0.85
Item 5	2	5,364	90.1	8.6	1.3	0.92	0.00	0.92
Item 6	2	5,361	90.1	9.0	0.9	0.87	0.00	0.87
Item 7	2	5,363	89.6	9.5	0.9	0.85	0.01	0.85
Item 8	2	5,363	89.9	9.0	1.1	0.90	0.01	0.90
Item 9	2	5,364	89.7	9.3	1.0	0.92	0.01	0.92
Item 10	2	5,623	90.2	9.3	0.5	0.91	0.00	0.91
Item 11	2	5,623	90.1	9.6	0.4	0.93	0.02	0.93
Item 12	2	5,623	89.9	9.8	0.3	0.90	0.00	0.90

Table O.30. Operational Rater Agreement Statistics—Science Grade 8

Item	Max. Points	Ν	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
Item 1	2	5,122	90.1	9.9	0.0	0.88	0.03	0.88
Item 2	2	5,121	90.0	9.4	0.7	0.91	0.01	0.91
Item 3	2	5,122	90.3	9.1	0.7	0.77	0.02	0.77
Item 4	2	4,918	90.7	9.2	0.2	0.91	0.00	0.91
Item 5	2	4,918	90.2	8.5	1.3	0.90	0.00	0.90
Item 6	2	4,916	89.7	8.7	1.6	0.84	0.00	0.84
Item 7	2	4,915	87.1	12.4	0.6	0.83	0.01	0.83
Item 8	2	5,122	90.3	9.6	0.0	0.93	0.01	0.93
Item 9	2	5,122	89.9	9.9	0.2	0.93	0.01	0.93
Item 10	2	5,122	90.5	9.5	0.0	0.88	0.01	0.88
Item 11	2	5,122	90.2	9.4	0.4	0.82	0.00	0.82

Item	Max. Points	N	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
Item 12	2	4,916	96.2	2.9	0.9	0.94	0.01	0.94
Item 13	2	4,916	89.9	10.0	0.0	0.92	0.00	0.92
Item 14	2	4,916	90.0	10.0	0.0	0.89	0.00	0.89

 Table O.31. Operational Rater Agreement Statistics—Science Grade 11

Item	Max. Points	Ν	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
Item 1	2	3,215	93.7	6.3	0.0	0.77	0.01	0.77
Item 2	2	3,215	89.2	10.3	0.5	0.91	0.00	0.91
Item 3	2	3,134	90.7	9.3	0.0	0.94	0.00	0.94
Item 4	2	3,133	89.9	9.8	0.3	0.89	0.01	0.89
Item 5	2	3,133	89.1	9.7	1.2	0.88	0.01	0.88
Item 6	2	3,215	89.7	9.9	0.4	0.90	0.01	0.90
Item 7	2	3,134	90.3	9.7	0.0	0.91	0.00	0.91
Item 8	2	3,133	89.4	9.6	0.9	0.91	0.00	0.91
Item 9	2	3,215	90.5	9.3	0.2	0.85	0.01	0.85
Item 10	2	3,215	89.9	9.1	0.9	0.88	0.01	0.88
Item 11	2	3,215	93.2	6.8	0.0	0.84	0.01	0.84
Item 12	2	3,215	89.6	9.5	0.9	0.66	0.04	0.67

## Table O.32. Field Test Rater Agreement Statistics—Science Grade 5

Item	Max. Points	N	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
Item 1	2	3,244	91.1	8.2	0.8	0.87	0.01	0.87
Item 2	2	3,226	91.2	8.6	0.2	0.93	0.00	0.93
Item 3	2	3,519	92.0	8.0	0.0	0.85	0.01	0.85
Item 4	2	3,122	90.5	8.5	1.0	0.81	0.01	0.81
Item 5	2	3,469	89.8	10.0	0.1	0.88	0.01	0.88
Item 6	2	3,159	89.7	10.0	0.3	0.87	0.02	0.87
Item 7	2	3,338	93.2	6.6	0.2	0.95	0.01	0.95
Item 8	2	3,698	94.3	5.5	0.2	0.81	0.02	0.81
Item 9	2	3,391	88.9	10.0	1.1	0.79	0.01	0.79
Item 10	2	3,311	85.1	12.8	2.2	0.82	0.01	0.82
Item 11	2	3,089	90.2	9.7	0.1	0.92	0.01	0.92
Item 12	2	3,230	89.8	10.0	0.2	0.90	0.01	0.90
Item 13	2	3,048	90.0	9.8	0.2	0.92	0.01	0.92
Item 14	2	3,099	91.7	8.1	0.1	0.90	0.00	0.90
Item 15	2	3,113	89.9	10.0	0.1	0.82	0.00	0.82
Item 16	2	3,124	89.6	9.9	0.5	0.85	0.01	0.85
Item 17	2	3,081	90.2	9.1	0.7	0.90	0.00	0.90
Item 18	2	3,108	96.0	3.4	0.6	0.97	0.00	0.97
Item 19	2	3,085	90.1	9.4	0.5	0.92	0.01	0.92
Item 20	2	3,092	89.7	9.4	0.9	0.87	0.01	0.87
Item 21	2	3,059	89.9	6.8	3.3	0.83	0.03	0.84
Item 22	2	3,045	90.0	9.9	0.1	0.89	0.02	0.89
Item 23	2	3,043	90.2	9.6	0.2	0.87	0.02	0.87

Item	Max. Points	N	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
Item 1	2	3,149	96.0	4.0	0.0	0.96	0.00	0.96
Item 2	2	3,222	89.6	10.1	0.3	0.91	0.01	0.91
Item 3	2	3,195	89.7	8.3	2.0	0.89	0.02	0.89
Item 4	2	3,493	88.7	11.3	0.0	0.88	0.00	0.88
Item 5	2	3,660	90.6	9.3	0.1	0.91	0.00	0.91
Item 6	2	3,212	90.2	9.7	0.1	0.87	0.01	0.87
Item 7	2	3,435	89.8	9.6	0.6	0.89	0.00	0.89
Item 8	2	3,306	89.8	9.7	0.5	0.86	0.01	0.86
Item 9	2	3,307	89.2	10.6	0.2	0.86	0.03	0.86
Item 10	2	3,239	89.6	9.6	0.8	0.90	0.00	0.90
Item 11	2	3,233	89.5	7.4	3.1	0.76	0.01	0.76
Item 12	2	3,339	89.3	10.3	0.5	0.92	0.01	0.92
Item 13	2	3,226	89.3	10.7	0.0	0.91	0.05	0.91
Item 14	2	3,191	89.4	10.6	0.0	0.92	0.00	0.92
Item 15	2	3,444	92.2	6.9	0.9	0.90	0.00	0.90
Item 16	2	3,283	93.5	6.1	0.4	0.81	0.01	0.81
Item 17	2	3,207	89.5	9.8	0.8	0.86	0.01	0.86
Item 18	2	3,211	91.3	6.9	1.8	0.90	0.00	0.90
Item 19	2	3,193	89.6	9.9	0.5	0.86	0.01	0.86
Item 20	2	3,225	94.6	4.9	0.5	0.95	0.00	0.95
Item 21	2	3,148	90.0	9.1	0.9	0.91	0.01	0.91
Item 22	2	3,206	89.2	10.8	0.0	0.86	0.00	0.86
Item 23	2	3,187	89.3	10.7	0.0	0.88	0.01	0.88
Item 24	2	3,182	90.7	9.3	0.0	0.84	0.00	0.84
Item 25	2	3,204	90.0	9.5	0.6	0.90	0.00	0.90
Item 26	2	3,145	89.5	10.5	0.0	0.91	0.00	0.91
Item 27	2	3,176	89.4	10.5	0.1	0.90	0.01	0.90

 Table O.33. Field Test Rater Agreement Statistics—Science Grade 8

## Table O.34. Field Test Rater Agreement Statistics—Science Grade 11

Item	Max. Points	N	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
Item 1	2	3,083	92.4	7.6	0.0	0.88	0.01	0.88
Item 2	2	2,937	88.9	11.1	0.0	0.91	0.02	0.91
Item 3	2	2,948	88.7	11.3	0.0	0.87	0.00	0.87
Item 4	2	2,996	94.4	5.6	0.0	0.94	0.00	0.94
Item 5	2	2,914	89.1	10.9	0.0	0.90	0.01	0.90
Item 6	2	2,993	98.6	1.4	0.0	0.99	0.00	0.99
Item 7	2	2,994	97.1	2.9	0.0	0.96	0.01	0.96
Item 8	2	2,940	91.5	8.5	0.0	0.90	0.01	0.90
Item 9	2	2,968	92.8	7.2	0.0	0.90	0.01	0.90
Item 10	2	3,083	90.8	9.2	0.1	0.88	0.01	0.88
Item 11	2	3,049	89.3	10.0	0.7	0.89	0.01	0.89
Item 12	2	3,065	88.8	11.2	0.0	0.90	0.00	0.90
Item 13	2	3,325	89.0	11.0	0.0	0.89	0.00	0.89
Item 14	2	4,026	89.8	8.8	1.4	0.78	0.01	0.78

Item	Max. Points	N	%Exact	%Adjacent	%Non-Adjacent	Kappa	MD	Corr.
Item 15	2	3,291	91.5	8.4	0.1	0.88	0.01	0.88
Item 16	2	3,098	88.8	11.2	0.0	0.84	0.00	0.84
Item 17	2	3,011	78.0	21.7	0.2	0.83	0.01	0.83
Item 18	2	2,983	90.2	9.8	0.0	0.63	0.02	0.63
Item 19	2	3,018	93.0	7.0	0.0	0.65	0.01	0.65
Item 20	2	3,048	90.7	9.3	0.0	0.78	0.01	0.78
Item 21	2	2,935	83.1	16.9	0.0	0.82	0.01	0.82
Item 22	2	2,936	94.3	5.6	0.1	0.91	0.02	0.91
Item 23	2	2,968	91.0	8.9	0.1	0.76	0.02	0.76
Item 24	2	3,048	91.1	8.8	0.1	0.75	0.02	0.75
Item 25	2	3,081	97.9	2.1	0.0	0.98	0.01	0.98
Item 26	2	3,003	89.2	10.8	0.0	0.87	0.01	0.87
Item 27	2	3,002	89.3	10.7	0.0	0.79	0.01	0.79
Item 28	2	3,060	91.9	7.5	0.6	0.77	0.00	0.77